5,8,11-Eicosatrienoic acid (BioDeep_00000014281)

 

Secondary id: BioDeep_00000593741

human metabolite Endogenous blood metabolite


代谢物信息卡片


(5Z,8Z,11Z)-Eicosa-5,8,11-trienoic acid

化学式: C20H34O2 (306.2558664)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(blood) 3.8%

分子结构信息

SMILES: CCCCCCCC/C=C/C/C=C/C/C=C/CCCC(=O)O
InChI: InChI=1S/C20H34O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20(21)22/h9-10,12-13,15-16H,2-8,11,14,17-19H2,1H3,(H,21,22)/b10-9-,13-12-,16-15-

描述信息

5,8,11-Eicosatrienoic acid (Mead acid) is a carboxylic acid with a 20-carbon chain and three methylene-interrupted cis double bonds. The first double bond is located at the ninth carbon from the omega end. In physiological literature, it is given the name 20:3(n-9). In the presence of lipoxygenase, Mead acid can form various hydroxy products (HETE). It is the only polyunsaturated fatty acid that the body can make de novo. Its elevated presence in the blood is an indication of essential fatty acid (EFA)deficiency. During dietary EFA insufficiency, especially arachidonic acid deficiency, the body will make Mead acid by the elongation and desaturation of oleic acid. (Wikipedia).

同义名列表

21 个代谢物同义名

(5Z,8Z,11Z)-Eicosa-5,8,11-trienoic acid; (5Z,8Z,11Z)-icosa-5,8,11-trienoic acid; all-cis-Eicosa-5,8,11-trienoic acid; (5Z,8Z,11Z)-Eicosa-5,8,11-trienoate; all-cis-Icosa-5,8,11-trienoic acid; all-cis-Eicosa-5,8,11-trienoate; (5Z,8Z,11Z)-Eicosatrienoic acid; all-cis-Icosa-5,8,11-trienoate; 5Z,8Z,11Z-eicosatrienoic acid; 5Z,8Z,11Z-Icosatrienoic acid; eicosa-5,8,11-trienoic acid; (5Z,8Z,11Z)-Eicosatrienoate; 5,8,11-eicosatrienoic acid; (5Z,8Z,11Z)-Icosatrienoate; 5Z,8Z,11Z-Eicosatrienoate; 5Z,8Z,11Z-Icosatrienoate; 5,8,11-Eicosatrienoate; ETrE(5Z,8Z,11Z); C20:3n-9,12,15; Mead acid; ETrA acid



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

2 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(2)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Hiroshi Kawashima, Katsuhiko Yoshizawa. The physiological and pathological properties of Mead acid, an endogenous multifunctional n-9 polyunsaturated fatty acid. Lipids in health and disease. 2023 Oct; 22(1):172. doi: 10.1186/s12944-023-01937-6. [PMID: 37838679]
  • Leah Gramlich, Carol Ireton-Jones, John M Miles, Maya Morrison, Alessandro Pontes-Arruda. Essential Fatty Acid Requirements and Intravenous Lipid Emulsions. JPEN. Journal of parenteral and enteral nutrition. 2019 08; 43(6):697-707. doi: 10.1002/jpen.1537. [PMID: 30908685]
  • Margaret L Ong, Robert S Venick, Stephen B Shew, James C Y Dunn, Laurie Reyen, Tristan Grogan, Kara L Calkins. Intravenous Fish Oil and Serum Fatty Acid Profiles in Pediatric Patients With Intestinal Failure-Associated Liver Disease. JPEN. Journal of parenteral and enteral nutrition. 2019 08; 43(6):717-725. doi: 10.1002/jpen.1532. [PMID: 30900274]
  • Prabha Tiwari, Takahiro Nagatake, So-Ichiro Hirata, Kento Sawane, Azusa Saika, Yuki Shibata, Sakiko Morimoto, Tetsuya Honda, Jun Adachi, Yuichi Abe, Junko Isoyama, Takeshi Tomonaga, Hiroshi Kiyono, Kenji Kabashima, Jun Kunisawa. Dietary coconut oil ameliorates skin contact hypersensitivity through mead acid production in mice. Allergy. 2019 08; 74(8):1522-1532. doi: 10.1111/all.13762. [PMID: 30843234]
  • Tomoharu Mizukami, Kazutaka Ikeda, Yuta Shimanaka, Katsunari Korogi, Chunyu Zhou, Hiroshi Takase, Hitomi Tsuiji, Nozomu Kono, Takao Kohno, Hiroyuki Arai, Makoto Arita, Mitsuharu Hattori. Reelin deficiency leads to aberrant lipid composition in mouse brain. Biochemical and biophysical research communications. 2018 10; 505(1):81-86. doi: 10.1016/j.bbrc.2018.09.089. [PMID: 30241938]
  • Yuri Hayashi, Ayano Shimamura, Tomoko Ishikawa, Yoko Fujiwara, Ikuyo Ichi. FADS2 inhibition in essential fatty acid deficiency induces hepatic lipid accumulation via impairment of very low-density lipoprotein (VLDL) secretion. Biochemical and biophysical research communications. 2018 02; 496(2):549-555. doi: 10.1016/j.bbrc.2018.01.064. [PMID: 29353041]
  • Emma Kjellberg, Josefine Roswall, Stefan Bergman, Birgitta Strandvik, Jovanna Dahlgren. Serum n-6 and n-9 Fatty Acids Correlate With Serum IGF-1 and Growth Up to 4 Months of Age in Healthy Infants. Journal of pediatric gastroenterology and nutrition. 2018 01; 66(1):141-146. doi: 10.1097/mpg.0000000000001691. [PMID: 28753183]
  • Leah Gramlich, Liisa Meddings, Cathy Alberda, Sanit Wichansawakun, Sarah Robbins, David Driscoll, Bruce Bistrian. Essential Fatty Acid Deficiency in 2015: The Impact of Novel Intravenous Lipid Emulsions. JPEN. Journal of parenteral and enteral nutrition. 2015 Sep; 39(1 Suppl):61S-6S. doi: 10.1177/0148607115595977. [PMID: 26187936]
  • Kei Hamazaki, Yoshiharu Kawaguchi, Masato Nakano, Taketoshi Yasuda, Shoji Seki, Takeshi Hori, Tomohito Hamazaki, Tomoatsu Kimura. Mead acid (20:3n-9) and n-3 polyunsaturated fatty acids are not associated with risk of posterior longitudinal ligament ossification: results of a case-control study. Prostaglandins, leukotrienes, and essential fatty acids. 2015 May; 96(?):31-6. doi: 10.1016/j.plefa.2015.01.003. [PMID: 25669698]
  • Marita Paassilta, Elina Kuusela, Matti Korppi, Riina Lemponen, Minna Kaila, Seppo T Nikkari. Food allergy in small children carries a risk of essential fatty acid deficiency, as detected by elevated serum mead acid proportion of total fatty acids. Lipids in health and disease. 2014 Dec; 13(?):180. doi: 10.1186/1476-511x-13-180. [PMID: 25440954]
  • Hideyuki Miyoshi, Kyoji Moriya, Takeya Tsutsumi, Seiko Shinzawa, Hajime Fujie, Yoshizumi Shintani, Hidetake Fujinaga, Koji Goto, Toru Todoroki, Tetsuro Suzuki, Tatsuo Miyamura, Yoshiharu Matsuura, Hiroshi Yotsuyanagi, Kazuhiko Koike. Pathogenesis of lipid metabolism disorder in hepatitis C: polyunsaturated fatty acids counteract lipid alterations induced by the core protein. Journal of hepatology. 2011 Mar; 54(3):432-8. doi: 10.1016/j.jhep.2010.07.039. [PMID: 21093950]
  • Wilmon F Grant, Melanie B Gillingham, Ayesha K Batra, Natasha M Fewkes, Sarah M Comstock, Diana Takahashi, Theodore P Braun, Kevin L Grove, Jacob E Friedman, Daniel L Marks. Maternal high fat diet is associated with decreased plasma n-3 fatty acids and fetal hepatic apoptosis in nonhuman primates. PloS one. 2011 Feb; 6(2):e17261. doi: 10.1371/journal.pone.0017261. [PMID: 21364873]
  • Giuseppe Astarita, Kwang-Mook Jung, Vitaly Vasilevko, Nicholas V Dipatrizio, Sarah K Martin, David H Cribbs, Elizabeth Head, Carl W Cotman, Daniele Piomelli. Elevated stearoyl-CoA desaturase in brains of patients with Alzheimer's disease. PloS one. 2011; 6(10):e24777. doi: 10.1371/journal.pone.0024777. [PMID: 22046234]
  • Iu K Karaman, T P Novgorodtseva, T A Kantur, M V Antoniuk, N V Zhukova. [The role of modification of fatty acid composition of erythrocyte lipids in pathogenesis of arterial hypertension]. Kardiologiia. 2010; 50(7):26-30. doi: ". [PMID: 20659041]
  • Robert A M Strijbosch, Sang Lee, Danielle A Arsenault, Charlotte Andersson, Kathleen M Gura, Bruce R Bistrian, Mark Puder. Fish oil prevents essential fatty acid deficiency and enhances growth: clinical and biochemical implications. Metabolism: clinical and experimental. 2008 May; 57(5):698-707. doi: 10.1016/j.metabol.2008.01.008. [PMID: 18442636]
  • Thierry Charles Coste, Gladys Deumer, Gregory Reychler, Patrick Lebecque, Pierre Wallemacq, Teresinha Leal. Influence of pancreatic status and sex on polyunsaturated fatty acid profiles in cystic fibrosis. Clinical chemistry. 2008 Feb; 54(2):388-95. doi: 10.1373/clinchem.2007.094623. [PMID: 18089657]
  • V L Heyd, A R Eynard. Effects of eicosatrienoic acid (20:3 n-9, Mead's acid) on some promalignant-related properties of three human cancer cell lines. Prostaglandins & other lipid mediators. 2003 Jul; 71(3-4):177-88. doi: 10.1016/s1098-8823(03)00037-6. [PMID: 14518560]
  • Hiroshi Yoshida, Hideki Soh, Kinya Sando, Masafumi Wasa, Yoji Takagi, Akira Okada. Beneficial effects of n-9 eicosatrienoic acid on experimental bowel lesions. Surgery today. 2003; 33(8):600-5. doi: 10.1007/s00595-003-2572-9. [PMID: 12884098]
  • E Sakuradani, N Kamada, Y Hirano, M Nishihara, H Kawashima, K Akimoto, K Higashiyama, J Ogawa, S Shimizu. Production of 5,8,11-eicosatrienoic acid by a delta5 and delta6 desaturation activity-enhanced mutant derived from a delta12 desaturation activity-defective mutant of Mortierella alpina 1S-4. Applied microbiology and biotechnology. 2002 Nov; 60(3):281-7. doi: 10.1007/s00253-002-1128-z. [PMID: 12436308]
  • Tamás Decsi, Günther Boehm, H M Ria Tjoonk, Szilárd Molnár, D A Janneke Dijck-Brouwer, Mijna Hadders-Algra, Ingrid A Martini, Frits A J Muskiet, E Rudy Boersma. Trans isomeric octadecenoic acids are related inversely to arachidonic acid and DHA and positively related to mead acid in umbilical vessel wall lipids. Lipids. 2002 Oct; 37(10):959-65. doi: 10.1007/s11745-006-0987-y. [PMID: 12530555]
  • F Kuroki, M Iida, T Matsumoto, K Aoyagi, K Kanamoto, M Fujishima. Serum n3 polyunsaturated fatty acids are depleted in Crohn's disease. Digestive diseases and sciences. 1997 Jun; 42(6):1137-41. doi: 10.1023/a:1018873217192. [PMID: 9201073]
  • L G Cleland, M A Neumann, R A Gibson, T Hamazaki, K Akimoto, M J James. Effect of dietary n-9 eicosatrienoic acid on the fatty acid composition of plasma lipid fractions and tissue phospholipids. Lipids. 1996 Aug; 31(8):829-37. doi: 10.1007/bf02522978. [PMID: 8869885]
  • L L Stoll, A A Spector. Functional and ultrastructural effects of essential fatty acid deficiency in kidney epithelial cells. Lipids. 1995 Dec; 30(12):1098-103. doi: 10.1007/bf02536609. [PMID: 8614299]
  • M D Al, G Hornstra, Y T van der Schouw, M T Bulstra-Ramakers, H J Huisjes. Biochemical EFA status of mothers and their neonates after normal pregnancy. Early human development. 1990 Dec; 24(3):239-48. doi: 10.1016/0378-3782(90)90031-d. [PMID: 2151387]
  • R Christon, V Even, D Daveloose, C L Léger, J Viret. Modification of fluidity and lipid-protein relationships in pig intestinal brush-border membrane by dietary essential fatty acid deficiency. Biochimica et biophysica acta. 1989 Mar; 980(1):77-84. doi: 10.1016/0005-2736(89)90202-2. [PMID: 2538158]
  • P M Farrell, G R Gutcher, M Palta, D DeMets. Essential fatty acid deficiency in premature infants. The American journal of clinical nutrition. 1988 Aug; 48(2):220-9. doi: 10.1093/ajcn/48.2.220. [PMID: 3407602]
  • R Cotter, R Johnson, M Tumbelson, J Dexter, S Young, C A Taylor, F Cosmas, W B Rowe, L Lin. Fatty acid profiles in response to soybean oil lipid emulsion infusions in essential fatty acid-deficient miniature swine. JPEN. Journal of parenteral and enteral nutrition. 1988 Mar; 12(2):121-6. doi: 10.1177/0148607188012002121. [PMID: 3129587]
  • R J Cooke, Y Y Yeh, D Gibson, D Debo, G L Bell. Soybean oil emulsion administration during parenteral nutrition in the preterm infant: effect on essential fatty acid, lipid, and glucose metabolism. The Journal of pediatrics. 1987 Nov; 111(5):767-73. doi: 10.1016/s0022-3476(87)80265-2. [PMID: 3117998]
  • T W Weiner, H Sprecher. Arachidonic acid, 5,8,11-eicosatrienoic acid and 5,8,11,14, 17-eicosapentaenoic acid. Dietary manipulation of the levels of these acids in rat liver and platelet phospholipids and their incorporation into human platelet lipids. Biochimica et biophysica acta. 1984 Mar; 792(3):293-303. doi: 10.1016/0005-2760(84)90196-6. [PMID: 6320899]
  • E J Neufeld, D B Wilson, H Sprecher, P W Majerus. High affinity esterification of eicosanoid precursor fatty acids by platelets. The Journal of clinical investigation. 1983 Jul; 72(1):214-20. doi: 10.1172/jci110959. [PMID: 6308046]
  • M Nubé, L P Bos, D M vd Boomgaard, W T Hekkens. Energy intake and the appearance of 5,8,11-eicosatrienoic acid in serum lipids during parenteral nutrition without fat. JPEN. Journal of parenteral and enteral nutrition. 1982 Mar; 6(2):134-9. doi: 10.1177/0148607182006002134. [PMID: 6808172]
  • S Hammarström. Conversion of 5,8,11-eicosatrienoic acid to leukotrienes C3 and D3. The Journal of biological chemistry. 1981 Mar; 256(5):2275-9. doi: NULL. [PMID: 6780563]
  • E KLENK, H PFLUEGER. [ON THE BIOGENESIS OF 5,8,11-EICOSATRIENOIC ACID IN RATS FED A FAT-FREE DIET]. Hoppe-Seyler's Zeitschrift fur physiologische Chemie. 1963; 335(?):53-62. doi: ". [PMID: 14117187]
  • A J FULCO, J F MEAD. Metabolism of essential fatty acids. VIII. Origin of 5,8,11-eicosatrienoic acid in the fat-deficient rat. The Journal of biological chemistry. 1959 Jun; 234(6):1411-6. doi: 10.1016/s0021-9258(18)70021-5. [PMID: 13654388]
  • J F MEAD, W H SLATON. Metabolism of essential fatty acids. III. Isolation of 5,8,11-eicosatrienoic acid from fat-deficient rats. The Journal of biological chemistry. 1956 Apr; 219(2):705-9. doi: 10.1016/s0021-9258(18)65729-1. [PMID: 13319291]