carlactone (BioDeep_00000013609)

   


代谢物信息卡片


carlactone

化学式: C19H26O3 (302.1882)
中文名称:
谱图信息: 最多检出来源 Viridiplantae(plant) 16.61%

分子结构信息

SMILES: CC(C=CC1=C(C)CCCC1(C)C)=COC1C=C(C)C(=O)O1
InChI: InChI=1S/C19H26O3/c1-13(12-21-17-11-15(3)18(20)22-17)8-9-16-14(2)7-6-10-19(16,4)5/h8-9,11-12,17H,6-7,10H2,1-5H3/b9-8+,13-12-

描述信息

同义名列表

1 个代谢物同义名

carlactone



数据库引用编号

8 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(1)

代谢反应

359 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(2)

WikiPathways(0)

Plant Reactome(229)

INOH(0)

PlantCyc(127)

COVID-19 Disease Map(0)

PathBank(1)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表


文献列表

  • Takatoshi Wakabayashi, Kasumi Shida, Yurie Kitano, Hirosato Takikawa, Masaharu Mizutani, Yukihiro Sugimoto. CYP722C from Gossypium arboreum catalyzes the conversion of carlactonoic acid to 5-deoxystrigol. Planta. 2020 Apr; 251(5):97. doi: 10.1007/s00425-020-03390-6. [PMID: 32306106]
  • Yanxia Zhang, Xi Cheng, Yanting Wang, Carmen Díez-Simón, Kristyna Flokova, Andrea Bimbo, Harro J Bouwmeester, Carolien Ruyter-Spira. The tomato MAX1 homolog, SlMAX1, is involved in the biosynthesis of tomato strigolactones from carlactone. The New phytologist. 2018 07; 219(1):297-309. doi: 10.1111/nph.15131. [PMID: 29655242]
  • Kaori Yoneyama, Narumi Mori, Tomoyasu Sato, Akiyoshi Yoda, Xiaonan Xie, Masanori Okamoto, Masashi Iwanaga, Toshiyuki Ohnishi, Hisashi Nishiwaki, Tadao Asami, Takao Yokota, Kohki Akiyama, Koichi Yoneyama, Takahito Nomura. Conversion of carlactone to carlactonoic acid is a conserved function of MAX1 homologs in strigolactone biosynthesis. The New phytologist. 2018 06; 218(4):1522-1533. doi: 10.1111/nph.15055. [PMID: 29479714]
  • Moe Iseki, Kasumi Shida, Kazuma Kuwabara, Takatoshi Wakabayashi, Masaharu Mizutani, Hirosato Takikawa, Yukihiro Sugimoto. Evidence for species-dependent biosynthetic pathways for converting carlactone to strigolactones in plants. Journal of experimental botany. 2018 04; 69(9):2305-2318. doi: 10.1093/jxb/erx428. [PMID: 29294064]
  • Mark Bruno, Martina Vermathen, Adrian Alder, Florian Wüst, Patrick Schaub, Rob van der Steen, Peter Beyer, Sandro Ghisla, Salim Al-Babili. Insights into the formation of carlactone from in-depth analysis of the CCD8-catalyzed reactions. FEBS letters. 2017 Mar; 591(5):792-800. doi: 10.1002/1873-3468.12593. [PMID: 28186640]
  • Narumi Mori, Kenta Nishiuma, Takuya Sugiyama, Hideo Hayashi, Kohki Akiyama. Carlactone-type strigolactones and their synthetic analogues as inducers of hyphal branching in arbuscular mycorrhizal fungi. Phytochemistry. 2016 Oct; 130(?):90-8. doi: 10.1016/j.phytochem.2016.05.012. [PMID: 27264641]
  • Kun-Peng Jia, Boubacar A Kountche, Muhammad Jamil, Xiujie Guo, Valentine O Ntui, Andreas Rüfenacht, Soizic Rochange, Salim Al-Babili. Nitro-Phenlactone, a Carlactone Analog with Pleiotropic Strigolactone Activities. Molecular plant. 2016 09; 9(9):1341-1344. doi: 10.1016/j.molp.2016.05.017. [PMID: 27288318]
  • Salim Al-Babili, Harro J Bouwmeester. Strigolactones, a novel carotenoid-derived plant hormone. Annual review of plant biology. 2015; 66(?):161-86. doi: 10.1146/annurev-arplant-043014-114759. [PMID: 25621512]
  • Satoko Abe, Aika Sado, Kai Tanaka, Takaya Kisugi, Kei Asami, Saeko Ota, Hyun Il Kim, Kaori Yoneyama, Xiaonan Xie, Toshiyuki Ohnishi, Yoshiya Seto, Shinjiro Yamaguchi, Kohki Akiyama, Koichi Yoneyama, Takahito Nomura. Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proceedings of the National Academy of Sciences of the United States of America. 2014 Dec; 111(50):18084-9. doi: 10.1073/pnas.1410801111. [PMID: 25425668]
  • Yanxia Zhang, Aalt D J van Dijk, Adrian Scaffidi, Gavin R Flematti, Manuel Hofmann, Tatsiana Charnikhova, Francel Verstappen, Jo Hepworth, Sander van der Krol, Ottoline Leyser, Steven M Smith, Binne Zwanenburg, Salim Al-Babili, Carolien Ruyter-Spira, Harro J Bouwmeester. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nature chemical biology. 2014 Dec; 10(12):1028-33. doi: 10.1038/nchembio.1660. [PMID: 25344813]
  • Kotomi Ueno, Toshio Furumoto, Shuhei Umeda, Masaharu Mizutani, Hirosato Takikawa, Rossitza Batchvarova, Yukihiro Sugimoto. Heliolactone, a non-sesquiterpene lactone germination stimulant for root parasitic weeds from sunflower. Phytochemistry. 2014 Dec; 108(?):122-8. doi: 10.1016/j.phytochem.2014.09.018. [PMID: 25446236]
  • Yoshiya Seto, Shinjiro Yamaguchi. Strigolactone biosynthesis and perception. Current opinion in plant biology. 2014 Oct; 21(?):1-6. doi: 10.1016/j.pbi.2014.06.001. [PMID: 24981923]
  • Yoshiya Seto, Aika Sado, Kei Asami, Atsushi Hanada, Mikihisa Umehara, Kohki Akiyama, Shinjiro Yamaguchi. Carlactone is an endogenous biosynthetic precursor for strigolactones. Proceedings of the National Academy of Sciences of the United States of America. 2014 Jan; 111(4):1640-5. doi: 10.1073/pnas.1314805111. [PMID: 24434551]
  • Adrian Scaffidi, Mark T Waters, Emilio L Ghisalberti, Kingsley W Dixon, Gavin R Flematti, Steven M Smith. Carlactone-independent seedling morphogenesis in Arabidopsis. The Plant journal : for cell and molecular biology. 2013 Oct; 76(1):1-9. doi: 10.1111/tpj.12265. [PMID: 23773129]
  • . . . . doi: . [PMID: 22422982]