Cytochalasin A (BioDeep_00000013150)

   


代谢物信息卡片


Cytochalasin A

化学式: C29H35NO5 (477.25151000000005)
中文名称: 细胞松驰素 A
谱图信息: 最多检出来源 Mentha canadensis(plant) 90.91%

分子结构信息

SMILES: C=C1C(C)C2C(Cc3ccccc3)NC(=O)C23OC(=O)C=CC(=O)CCCC(C)CC=CC3C1O
InChI: InChI=1S/C29H35NO5/c1-18-9-7-13-22(31)15-16-25(32)35-29-23(14-8-10-18)27(33)20(3)19(2)26(29)24(30-28(29)34)17-21-11-5-4-6-12-21/h4-6,8,11-12,14-16,18-19,23-24,26-27,33H,3,7,9-10,13,17H2,1-2H3,(H,30,34)/b14-8+,16-15+/t18-,19-,23+,24+,26+,27-,29-/m1/s1

描述信息

D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins

同义名列表

2 个代谢物同义名

Cytochalasin A; SMP1_000087



数据库引用编号

11 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Yafei Chen, Sarmina Dangol, Juan Wang, Nam-Soo Jwa. Focal Accumulation of ROS Can Block Pyricularia oryzae Effector BAS4-Expression and Prevent Infection in Rice. International journal of molecular sciences. 2020 Aug; 21(17):. doi: 10.3390/ijms21176196. [PMID: 32867341]
  • Nozomi Yamaoka, Yasutaka Suetomo, Tohru Yoshihisa, Seiji Sonobe. Motion analysis and ultrastructural study of a colonial diatom, Bacillaria paxillifer. Microscopy (Oxford, England). 2016 06; 65(3):211-21. doi: 10.1093/jmicro/dfv375. [PMID: 26754563]
  • Xiaohe Song, Qing Ma, Xinyuan Hao, Hongli Li. Roles of the actin cytoskeleton and an actin-binding protein in wheat resistance against Puccinia striiformis f. sp. tritici. Protoplasma. 2012 Jan; 249(1):99-106. doi: 10.1007/s00709-011-0265-6. [PMID: 21298301]
  • Laura A Jones, Peter E Sudbery. Spitzenkorper, exocyst, and polarisome components in Candida albicans hyphae show different patterns of localization and have distinct dynamic properties. Eukaryotic cell. 2010 Oct; 9(10):1455-65. doi: 10.1128/ec.00109-10. [PMID: 20693302]
  • Naimeh Taheri-Talesh, Tetsuya Horio, Lidia Araujo-Bazán, Xiaowei Dou, Eduardo A Espeso, Miguel A Peñalva, Stephen A Osmani, Berl R Oakley. The tip growth apparatus of Aspergillus nidulans. Molecular biology of the cell. 2008 Apr; 19(4):1439-49. doi: 10.1091/mbc.e07-05-0464. [PMID: 18216285]
  • Carolyn G Rasmussen, N Louise Glass. Localization of RHO-4 indicates differential regulation of conidial versus vegetative septation in the filamentous fungus Neurospora crassa. Eukaryotic cell. 2007 Jul; 6(7):1097-107. doi: 10.1128/ec.00050-07. [PMID: 17496127]
  • Yujiro Higuchi, Tomoyuki Nakahama, Jun-Ya Shoji, Manabu Arioka, Katsuhiko Kitamoto. Visualization of the endocytic pathway in the filamentous fungus Aspergillus oryzae using an EGFP-fused plasma membrane protein. Biochemical and biophysical research communications. 2006 Feb; 340(3):784-91. doi: 10.1016/j.bbrc.2005.12.077. [PMID: 16380079]
  • Tehila Hyman, Miri Shmuel, Yoram Altschuler. Actin is required for endocytosis at the apical surface of Madin-Darby canine kidney cells where ARF6 and clathrin regulate the actin cytoskeleton. Molecular biology of the cell. 2006 Jan; 17(1):427-37. doi: 10.1091/mbc.e05-05-0420. [PMID: 16251360]
  • M Riquelme, R Fischer, S Bartnicki-García. Apical growth and mitosis are independent processes in Aspergillus nidulans. Protoplasma. 2003; 222(3-4):211-5. doi: 10.1007/s00709-003-0020-8. [PMID: 14714210]
  • F Takahashi, T Hishinuma, H Kataoka. Blue light-induced branching in Vaucheria. Requirement of nuclear accumulation in the irradiated region. Plant & cell physiology. 2001 Mar; 42(3):274-85. doi: 10.1093/pcp/pce033. [PMID: 11266578]
  • M Sugimoto, K Toyoda, Y Ichinose, T Yamada, T Shiraishi. Cytochalasin A inhibits the binding of phenylalanine ammonia-lyase mRNA to ribosomes during induction of phytoalexin in pea seedlings. Plant & cell physiology. 2000 Feb; 41(2):234-8. doi: 10.1093/pcp/41.2.234. [PMID: 10795320]
  • Sara Torralba, Marjatta Raudaskoski, Ana María Pedregosa, Fernando Laborda. Effect of cytochalasin A on apical growth, actin cytoskeleton organization and enzyme secretion in Aspergillus nidulans. Microbiology (Reading, England). 1998 Jan; 144 ( Pt 1)(?):45-53. doi: 10.1099/00221287-144-1-45. [PMID: 9537763]
  • H C Cable, A el-Mansoury, N G Morgan. Activation of alpha-2-adrenoceptors results in an increase in F-actin formation in HIT-T15 pancreatic B-cells. The Biochemical journal. 1995 Apr; 307 ( Pt 1)(?):169-74. doi: 10.1042/bj3070169. [PMID: 7717971]
  • B Johansson, M P Wymann, K Holmgren-Peterson, K E Magnusson. N-formyl peptide receptors in human neutrophils display distinct membrane distribution and lateral mobility when labeled with agonist and antagonist. The Journal of cell biology. 1993 Jun; 121(6):1281-9. doi: 10.1083/jcb.121.6.1281. [PMID: 8509449]
  • A A el Mougith, J L Fonvieille, R Dargent, J Rami, J M Touzé-Soulet. [The effect of cytochalasin A on the composition of subcellular fractions of hyphae in the growth of Mucor mucedo L. I. Composition of the plasmalemma]. Canadian journal of microbiology. 1988 Nov; 34(11):1256-65. doi: NULL. [PMID: 2974755]
  • J G Elferink, M Deierkauf. Modulation of rabbit neutrophil chemotaxis by cytochalasin A. A comparison with other neutrophil functions. Inflammation. 1984 Mar; 8(1):63-72. doi: 10.1007/bf00918354. [PMID: 6715032]
  • B K Mookerjee, C Y Jung. Effects of cytochalasins on lymphocytes: mechanism of inhibition of rosette formation. Journal of immunology (Baltimore, Md. : 1950). 1983 Sep; 131(3):1126-30. doi: NULL. [PMID: 6684138]