Reaction Process: WikiPathways:WP2918

Isoprenoid precursor biosynthesis in Pf apicoplasts related metabolites

find 6 related metabolites which is associated with chemical reaction(pathway) Isoprenoid precursor biosynthesis in Pf apicoplasts

pyruvate ⟶ DOXP

Dihydroxyacetone phosphate

1,3-Dihydroxy-2-propanone monodihydrogen phosphoric acid

C3H7O6P (169.998)


An important intermediate in lipid biosynthesis and in glycolysis.; Dihydroxyacetone phosphate (DHAP) is a biochemical compound involved in many reactions, from the Calvin cycle in plants to the ether-lipid biosynthesis process in Leishmania mexicana. Its major biochemical role is in the glycolysis metabolic pathway. DHAP may be referred to as glycerone phosphate in older texts.; Dihydroxyacetone phosphate lies in the glycolysis metabolic pathway, and is one of the two products of breakdown of fructose 1,6-phosphate, along with glyceraldehyde 3-phosphate. It is rapidly and reversibly isomerised to glyceraldehyde 3-phosphate.; In the Calvin cycle, DHAP is one of the products of the sixfold reduction of 1,3-bisphosphoglycerate by NADPH. It is also used in the synthesis of sedoheptulose 1,7-bisphosphate and fructose 1,6-bisphosphate which are both used to reform ribulose 5-phosphate, the key carbohydrate of the Calvin cycle. Dihydroxyacetone phosphate is found in many foods, some of which are sesame, mexican groundcherry, parsley, and common wheat. [Spectral] Glycerone phosphate (exact mass = 169.99802) and beta-D-Fructose 1,6-bisphosphate (exact mass = 339.99605) and NADP+ (exact mass = 743.07545) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Dihydroxyacetone phosphate is an important intermediate in lipid biosynthesis and in glycolysis. Dihydroxyacetone phosphate is found to be associated with transaldolase deficiency, which is an inborn error of metabolism. Dihydroxyacetone phosphate has been identified in the human placenta (PMID: 32033212). KEIO_ID D014

   

Glyceraldehyde 3-phosphate

[(2R)-2-hydroxy-3-oxopropoxy]phosphonic acid

C3H7O6P (169.998)


Glyceraldehyde 3-phosphate (G3P) (CAS: 591-59-3), also known as triose phosphate, belongs to the class of organic compounds known as glyceraldehyde-3-phosphates. Glyceraldehyde-3-phosphates are compounds containing a glyceraldehyde substituted at position O3 by a phosphate group. Glyceraldehyde 3-phosphate is an extremely weak basic (essentially neutral) compound (based on its pKa). Glyceraldehyde 3-phosphate has been detected, but not quantified in, several different foods, such as sea-buckthorn berries, lingonberries, prunus (cherry, plum), quinoa, and sparkleberries. This could make glyceraldehyde 3-phosphate a potential biomarker for the consumption of these foods. Glyceraldehyde 3-phosphate is an aldotriose, an important metabolic intermediate in both glycolysis and gluconeogenesis, and in tryptophan biosynthesis. G3P is formed from fructose 1,6-bisphosphate, dihydroxyacetone phosphate (DHAP), and 1,3-bisphosphoglycerate (1,3BPG). This is the process by which glycerol (as DHAP) enters the glycolytic and gluconeogenesis pathways. Glyceraldehyde 3-phosphate (G3P) or triose phosphate is an aldotriose, an important metabolic intermediate in both glycolysis and gluconeogenesis, and in tryptophan biosynthesis. G3P is formed from Fructose-1,6-bisphosphate, Dihydroxyacetone phosphate (DHAP),and 1,3-bisphosphoglycerate, (1,3BPG), and this is how glycerol (as DHAP) enters the glycolytic and gluconeogenesis pathways. D-Glyceraldehyde 3-phosphate is found in many foods, some of which are quince, chinese cabbage, carob, and peach. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol

[({[(2R,3S,4R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy][(2R,3S)-2,3,4-trihydroxy-3-methylbutoxy]phosphinic acid

C14H25N3O14P2 (521.0812)


4-diphosphocytidyl-2-c-methyl-d-erythritol is a member of the class of compounds known as pyrimidine ribonucleoside diphosphates. Pyrimidine ribonucleoside diphosphates are pyrimidine ribonucleotides with diphosphate group linked to the ribose moiety. 4-diphosphocytidyl-2-c-methyl-d-erythritol is soluble (in water) and a moderately acidic compound (based on its pKa). 4-diphosphocytidyl-2-c-methyl-d-erythritol can be found in a number of food items such as pepper (c. chinense), pistachio, chestnut, and lupine, which makes 4-diphosphocytidyl-2-c-methyl-d-erythritol a potential biomarker for the consumption of these food products. 4-diphosphocytidyl-2-c-methyl-d-erythritol may be a unique E.coli metabolite.

   

2-phospho-4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol

{[(2S,3R)-4-({[({[(2R,3S,4R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-1,3-dihydroxy-2-methylbutan-2-yl]oxy}phosphonic acid

C14H26N3O17P3 (601.0475)


4-diphosphocytidyl-2-c-methyl-d-erythritol 2-phosphate, also known as 4-dpcmep, is a member of the class of compounds known as pyrimidine ribonucleoside diphosphates. Pyrimidine ribonucleoside diphosphates are pyrimidine ribonucleotides with diphosphate group linked to the ribose moiety. 4-diphosphocytidyl-2-c-methyl-d-erythritol 2-phosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 4-diphosphocytidyl-2-c-methyl-d-erythritol 2-phosphate can be found in a number of food items such as maitake, sunflower, allspice, and chives, which makes 4-diphosphocytidyl-2-c-methyl-d-erythritol 2-phosphate a potential biomarker for the consumption of these food products. 4-diphosphocytidyl-2-c-methyl-d-erythritol 2-phosphate may be a unique E.coli metabolite.

   

ME-2,4cPP

3-Methyl-1,2,3,4-tetrahydroxybutane-1,3-cyclic bisphosphate

C5H12O9P2 (277.9957)


   

(2R,3S)-2,3,4-trihydroxy-3-methylbutyl phosphate

(2R,3S)-2,3,4-trihydroxy-3-methylbutyl phosphate

C5H11O7P-2 (214.0242)