Reaction Process: Reactome:R-HSA-174495

Synthesis And Processing Of GAG, GAGPOL Polyproteins related metabolites

find 2 related metabolites which is associated with chemical reaction(pathway) Synthesis And Processing Of GAG, GAGPOL Polyproteins

GAG Polyprotein (P04591) + MYS-CoA ⟶ CoA-SH + N-myristoyl GAG (P04591) protein

Tetradecanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy({3-hydroxy-2,2-dimethyl-3-[(2-{[2-(tetradecanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]propoxy})phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C35H62N7O17P3S (977.3135592)


Tetradecanoyl-CoA (or myristoyl-CoA) is an intermediate in fatty acid biosynthesis, fatty acid elongation and the beta oxidation of fatty acids. It is also used in the myristoylation of proteins. The first pass through the beta-oxidation process starts with the saturated fatty acid palmitoyl-CoA and produces myristoyl-CoA. A total of four enzymatic steps are required, starting with VLCAD CoA dehydrogenase (Very Long Chain) activity, followed by three enzymatic steps catalyzed by enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and ketoacyl-CoA thiolase, all present in the mitochondria. Myristoylation of proteins is also catalyzed by the presence of myristoyl-CoA along with Myristoyl-CoA:protein N-myristoyltransferase (NMT). Myristoylation is an irreversible, co-translational (during translation) protein modification found in animals, plants, fungi and viruses. In this protein modification a myristoyl group (derived from myristioyl CoA) is covalently attached via an amide bond to the alpha-amino group of an N-terminal amino acid of a nascent polypeptide. It is more common on glycine residues but also occurs on other amino acids. Myristoylation also occurs post-translationally, for example when previously internal glycine residues become exposed by caspase cleavage during apoptosis. Myristoylation plays a vital role in membrane targeting and signal transduction in plant responses to environmental stress. Compared to other species that possess a single functional myristoyl-CoA: protein N-myristoyltransferase (NMT) gene copy, human, mouse and cow possess 2 NMT genes, and more than 2 protein isoforms. Myristoyl-coa, also known as S-tetradecanoyl-coenzyme a or myristoyl-coenzyme a, is a member of the class of compounds known as long-chain fatty acyl coas. Long-chain fatty acyl coas are acyl CoAs where the group acylated to the coenzyme A moiety is a long aliphatic chain of 13 to 21 carbon atoms. Myristoyl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Myristoyl-coa can be found in a number of food items such as sea-buckthornberry, anise, chicory, and cassava, which makes myristoyl-coa a potential biomarker for the consumption of these food products. Myristoyl-coa can be found primarily in human fibroblasts tissue. Myristoyl-coa exists in all eukaryotes, ranging from yeast to humans. In humans, myristoyl-coa is involved in few metabolic pathways, which include adrenoleukodystrophy, x-linked, beta oxidation of very long chain fatty acids, and fatty acid metabolism. Myristoyl-coa is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis TG(18:0/14:0/22:0), de novo triacylglycerol biosynthesis tg(i-21:0/12:0/14:0), de novo triacylglycerol biosynthesis TG(18:1(9Z)/14:0/22:2(13Z,16Z)), and de novo triacylglycerol biosynthesis TG(14:0/16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)).

   

coenzyme A(4-)

coenzyme A(4-)

C21H32N7O16P3S-4 (763.0839062)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS