Reaction Process: PlantCyc:PINEAPPLE_PWY-2902

cytokinin-O-glucosides biosynthesis related metabolites

find 9 related metabolites which is associated with chemical reaction(pathway) cytokinin-O-glucosides biosynthesis

trans-zeatin + UDP-α-D-glucose ⟶ trans-zeatin-O-glucoside + H+ + UDP

Zeatin

InChI=1/C10H13N5O/c1-7(4-16)2-3-11-9-8-10(13-5-12-8)15-6-14-9/h2,5-6,16H,3-4H2,1H3,(H2,11,12,13,14,15)/b7-2

C10H13N5O (219.11200480000002)


Zeatin belongs to the class of organic compounds known as 6-alkylaminopurines. 6-Alkylaminopurines are compounds that contain an alkylamine group attached at the 6-position of a purine. Purine is a bicyclic aromatic compound made up of a pyrimidine ring fused to an imidazole ring. Zeatin is a cytokinin (plant growth hormone) derived from the purine adenine, which occurs in the form of a cis- and a trans-isomer and conjugates. Zeatin was first discovered in immature corn kernels from the genus Zea. Zeatin has also been detected, but not quantified in several different foods, such as figs, rowanberries, red raspberries, garlic, and tree ferns. Zeatin has also been shown to promote the resistance of tobacco against the bacterial pathogen Pseudomonas syringae, in which trans-zeatin has a more prominent effect than cis-zeatin. Zeatin has several anti-ageing effects on human skin fibroblasts. It promotes the growth of lateral buds and, when sprayed on meristems, stimulates cell division to produce bushier plants. Zeatin and its derivatives occur in many plant extracts and are the active ingredient in coconut milk, which causes plant growth. Zeatin is a 6-isopentenylaminopurine. It has a role as a cytokinin. An aminopurine factor in plant extracts that induces cell division. (Grant & Hackhs Chemical Dict, 5th ed) trans-Zeatin is a natural product found in Cichorium intybus, Prunus cerasus, and other organisms with data available. An aminopurine factor in plant extracts that induces cell division. (Grant and Hackhs Chemical Dict, 5th ed) D006133 - Growth Substances > D010937 - Plant Growth Regulators > D003583 - Cytokinins Isolated from sweet corn (Zea mays) and numerous other plants Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID Z002; [MS2] KO009317 KEIO_ID Z002 trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation. trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation. trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation. trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation.

   

Dihydrozeatin

(2R)-2-methyl-4-[(9H-purin-6-yl)amino]butan-1-ol

C10H15N5O (221.127654)


Dihydrozeatin (CAS: 23599-75-9) belongs to the class of organic compounds known as 6-alkylaminopurines. 6-Alkylaminopurines are compounds that contain an alkylamine group attached at the 6-position of a purine. Purine is a bicyclic aromatic compound made up of a pyrimidine ring fused to an imidazole ring. Dihydrozeatin is an intermediate in zeatin biosynthesis. It is converted from dihydrozeatin riboside and is then converted into dihydrozeatin-O-glucoside via glycosyltransferases (EC 2.4.1.- ). Dihydrozeatin is a very strong basic compound (based on its pKa). D006133 - Growth Substances > D010937 - Plant Growth Regulators > D003583 - Cytokinins

   

6-(4-O-beta-D-Glucosyl-3-methyl-trans-but-2-enyl-amino)-purine

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-{[(2E)-2-methyl-4-[(1H-purin-6-yl)amino]but-2-en-1-yl]oxy}oxane-3,4,5-triol

C16H23N5O6 (381.1648258)


6-(4-o-beta-d-glucosyl-3-methyl-trans-but-2-enyl-amino)-purine, also known as trans-zeatin-O-glucoside or O-beta-D-glucosylzeatin, is a member of the class of compounds known as fatty acyl glycosides of mono- and disaccharides. Fatty acyl glycosides of mono- and disaccharides are compounds composed of a mono- or disaccharide moiety linked to one hydroxyl group of a fatty alcohol or of a phosphorylated alcohol (phosphoprenols), a hydroxy fatty acid or to one carboxyl group of a fatty acid (ester linkage) or to an amino alcohol. 6-(4-o-beta-d-glucosyl-3-methyl-trans-but-2-enyl-amino)-purine is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 6-(4-o-beta-d-glucosyl-3-methyl-trans-but-2-enyl-amino)-purine can be found in a number of food items such as yellow wax bean, common verbena, black elderberry, and sacred lotus, which makes 6-(4-o-beta-d-glucosyl-3-methyl-trans-but-2-enyl-amino)-purine a potential biomarker for the consumption of these food products.

   

cis-Zeatin O-glucoside

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-{[(2Z)-2-methyl-4-[(1H-purin-6-yl)amino]but-2-en-1-yl]oxy}oxane-3,4,5-triol

C16H23N5O6 (381.1648258)


cis-Zeatin O-glucoside, also known as O-beta-D-glucosylzeatin, belongs to the class of organic compounds known as fatty acyl glycosides of mono- and disaccharides. Fatty acyl glycosides of mono- and disaccharides are compounds composed of a mono- or disaccharide moiety linked to one hydroxyl group of a fatty alcohol, a phosphorylated alcohol (phosphoprenol), or a hydroxy fatty acid, or to one carboxyl group of a fatty acid (ester linkage) or an amino alcohol. cis-Zeatin O-glucoside is a very strong basic compound (based on its pKa). cis-Zeatin O-glucoside is an intermediate in zeatin biosynthesis. It is generated from cis-zeatin via the enzyme cis-zeatin O-beta-D-glucosyltransferase (EC 2.4.1.215).

   

Hydrogen Ion

Hydrogen cation

H+ (1.0078246)


Hydrogen ion, also known as proton or h+, is a member of the class of compounds known as other non-metal hydrides. Other non-metal hydrides are inorganic compounds in which the heaviest atom bonded to a hydrogen atom is belongs to the class of other non-metals. Hydrogen ion can be found in a number of food items such as lowbush blueberry, groundcherry, parsley, and tarragon, which makes hydrogen ion a potential biomarker for the consumption of these food products. Hydrogen ion exists in all living organisms, ranging from bacteria to humans. In humans, hydrogen ion is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-13:0/a-25:0/a-21:0/i-15:0), cardiolipin biosynthesis cl(a-13:0/a-17:0/i-13:0/a-25:0), cardiolipin biosynthesis cl(i-12:0/i-13:0/a-17:0/a-15:0), and cardiolipin biosynthesis CL(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/18:1(11Z)/22:5(7Z,10Z,13Z,16Z,19Z)). Hydrogen ion is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis TG(20:3(8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)), de novo triacylglycerol biosynthesis TG(18:2(9Z,12Z)/20:0/20:4(5Z,8Z,11Z,14Z)), de novo triacylglycerol biosynthesis TG(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)), and de novo triacylglycerol biosynthesis TG(24:0/20:5(5Z,8Z,11Z,14Z,17Z)/24:0). A hydrogen ion is created when a hydrogen atom loses or gains an electron. A positively charged hydrogen ion (or proton) can readily combine with other particles and therefore is only seen isolated when it is in a gaseous state or a nearly particle-free space. Due to its extremely high charge density of approximately 2×1010 times that of a sodium ion, the bare hydrogen ion cannot exist freely in solution as it readily hydrates, i.e., bonds quickly. The hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions . Hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions. Under aqueous conditions found in biochemistry, hydrogen ions exist as the hydrated form hydronium, H3O+, but these are often still referred to as hydrogen ions or even protons by biochemists. [Wikipedia])

   

Cis-zeatin

(Z)-2-Methyl-4-(1H-purin-6-ylamino)but-2-en-1-ol

C10H13N5O (219.11200480000002)


The cis-isomer of zeatin. Acquisition and generation of the data is financially supported by the Max-Planck-Society

   

Uridine-diphosphate

Uridine-diphosphate

C9H11N2O12P2-3 (400.9787246)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   
   

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-[(2S)-2-methyl-4-(7H-purin-6-ylamino)butoxy]oxane-3,4,5-triol

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-[(2S)-2-methyl-4-(7H-purin-6-ylamino)butoxy]oxane-3,4,5-triol

C16H25N5O6 (383.180475)