Reaction Process: PlantCyc:CLEMENTINE_PWY-6291
valencene and 7-epi-α-selinene biosynthesis related metabolites
find 4 related metabolites which is associated with chemical reaction(pathway) valencene and 7-epi-α-selinene biosynthesis
(2E,6E)-farnesyl diphosphate ⟶ (+)-valencene + diphosphate
Valencene
(+)-valencene is a carbobicyclic compound and sesquiterpene that is 1,2,3,4,4a,5,6,7-octahydronaphthalene which is substituted a prop-1-en-2-yl group at position 3 and by methyl groups at positions 4a and 5 (the 3R,4aS,5R- diastereoisomer). It is a sesquiterpene, a carbobicyclic compound and a polycyclic olefin. Valencene is a natural product found in Xylopia sericea, Helichrysum odoratissimum, and other organisms with data available. Valencene is found in citrus. Valencene is a constituent of orange oil Valencene is a sesquiterpene isolated from Cyperus rotundus, possesses antiallergic, antimelanogenesis, anti-infammatory, and antioxidant activitivies. Valencene inhibits the exaggerated expression of Th2 chemokines and proinflammatory chemokines through blockade of the NF-κB pathway. Valencene is used to flavor foods and drinks[1][2][3].
alpha-Selinene
Occurs in celery oil and hop (Humulus lupulus) oil. alpha-Selinene is found in many foods, some of which are ginger, lovage, sweet bay, and allspice. alpha-Selinene is found in alcoholic beverages. alpha-Selinene occurs in celery oil and hop (Humulus lupulus) oi
Pyrophosphate
The anion, the salts, and the esters of pyrophosphoric acid are called pyrophosphates. The pyrophosphate anion is abbreviated PPi and is formed by the hydrolysis of ATP into AMP in cells. This hydrolysis is called pyrophosphorolysis. The pyrophosphate anion has the structure P2O74-, and is an acid anhydride of phosphate. It is unstable in aqueous solution and rapidly hydrolyzes into inorganic phosphate. Pyrophosphate is an osteotoxin (arrests bone development) and an arthritogen (promotes arthritis). It is also a metabotoxin (an endogenously produced metabolite that causes adverse health affects at chronically high levels). Chronically high levels of pyrophosphate are associated with hypophosphatasia. Hypophosphatasia (also called deficiency of alkaline phosphatase or phosphoethanolaminuria) is a rare, and sometimes fatal, metabolic bone disease. Hypophosphatasia is associated with a molecular defect in the gene encoding tissue non-specific alkaline phosphatase (TNSALP). TNSALP is an enzyme that is tethered to the outer surface of osteoblasts and chondrocytes. TNSALP hydrolyzes several substances, including inorganic pyrophosphate (PPi) and pyridoxal 5-phosphate (PLP), a major form of vitamin B6. When TSNALP is low, inorganic pyrophosphate (PPi) accumulates outside of cells and inhibits the formation of hydroxyapatite, one of the main components of bone, causing rickets in infants and children and osteomalacia (soft bones) in adults. Vitamin B6 must be dephosphorylated by TNSALP before it can cross the cell membrane. Vitamin B6 deficiency in the brain impairs synthesis of neurotransmitters which can cause seizures. In some cases, a build-up of calcium pyrophosphate dihydrate crystals in the joints can cause pseudogout. COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
(2E,6E)-3,7,11-Trimethyldodeca-2,6,10-trien-1-yl diphosphate
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS