Reaction Process: PlantCyc:CACUMINATA_PWY-5083
NAD(P)/NADPH interconversion related metabolites
find 5 related metabolites which is associated with chemical reaction(pathway) NAD(P)/NADPH interconversion
NAD+ + NADPH ⟶ NADH + NADP+
Hydrogen Ion
Hydrogen ion, also known as proton or h+, is a member of the class of compounds known as other non-metal hydrides. Other non-metal hydrides are inorganic compounds in which the heaviest atom bonded to a hydrogen atom is belongs to the class of other non-metals. Hydrogen ion can be found in a number of food items such as lowbush blueberry, groundcherry, parsley, and tarragon, which makes hydrogen ion a potential biomarker for the consumption of these food products. Hydrogen ion exists in all living organisms, ranging from bacteria to humans. In humans, hydrogen ion is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-13:0/a-25:0/a-21:0/i-15:0), cardiolipin biosynthesis cl(a-13:0/a-17:0/i-13:0/a-25:0), cardiolipin biosynthesis cl(i-12:0/i-13:0/a-17:0/a-15:0), and cardiolipin biosynthesis CL(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/18:1(11Z)/22:5(7Z,10Z,13Z,16Z,19Z)). Hydrogen ion is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis TG(20:3(8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)), de novo triacylglycerol biosynthesis TG(18:2(9Z,12Z)/20:0/20:4(5Z,8Z,11Z,14Z)), de novo triacylglycerol biosynthesis TG(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)), and de novo triacylglycerol biosynthesis TG(24:0/20:5(5Z,8Z,11Z,14Z,17Z)/24:0). A hydrogen ion is created when a hydrogen atom loses or gains an electron. A positively charged hydrogen ion (or proton) can readily combine with other particles and therefore is only seen isolated when it is in a gaseous state or a nearly particle-free space. Due to its extremely high charge density of approximately 2×1010 times that of a sodium ion, the bare hydrogen ion cannot exist freely in solution as it readily hydrates, i.e., bonds quickly. The hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions . Hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions. Under aqueous conditions found in biochemistry, hydrogen ions exist as the hydrated form hydronium, H3O+, but these are often still referred to as hydrogen ions or even protons by biochemists. [Wikipedia])
Ubiquinone-1
Ubiquinone-1 is a member of the chemical class known as Polyprenylbenzoquinones. These are compounds containing a polyisoprene chain attached to a quinone at the second ring position. Ubiquione-1 has just 1 isoprene unit. Normally in humans it has 10. Ubiquinone-1 is an intermediate in the synthesis of Ubiquionone 10, which is also called Coenzyme Q (CoQ). CoQ is found in the membranes of endoplasmic reticulum, peroxisomes, lysosomes, vesicles and notably the inner membrane of the mitochondrion where it is an important part of the electron transport chain; there it passes reducing equivalents to acceptors such as Coenzyme Q : cytochrome c - oxidoreductase. CoQ is also essential in the formation of the apoptosome along with other adapter proteins. The loss of trophic factors activates pro-apoptotic enzymes, causing the breakdown of mitochondria. Because of its ability to transfer electrons and therefore act as an antioxidant, Coenzyme Q has become a valued dietary supplement. CoQ10 has been widely used for the treatment of heart disease (especially heart failure), gum diseases, and also breast cancer. The benzoquinone portion of Coenzyme Q10 is synthesized from amino acids, while the isoprene sidechain is synthesized from acetyl CoA through the mevalonate pathway. The mevalonate pathway is used for the first steps of cholesterol biosynthesis. A compound composed of the standard 2,3-dimethoxy-5-methylbenzoquinone nucleus common to ubiquinones; and a side chain of a single isoprenoid unit. [ChEBI] COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Ubiquinol 8
Ubiquinol 8 is a ubiquinol in which the polyprenyl substituent is octaprenyl. Ubiquinol-8 is the reduced form of ubiquinone-8. Ubiquinone (also known as coenzyme Q) is an isoprenoid quinone that functions as an electron carrier in membranes. In eukaryotes, ubiquinone is found mostly within the inner mitochondrial membrane where it functions in respiratory electron transport, transferring two electrons from either complex I (NADH dehydrogenase) or complex II (succinate-ubiquinone reductase) to complex III (bc1 complex). The quinone nucleus of ubiquinone is derived directly from 4-hydroxybenzoate, while the isoprenoid subunits of the polyisoprenoid tail are synthesized via the methylerythritol phosphate pathway, which feeds isoprene units into the polyprenyl biosynthesis pathways. The number of isoprenoid subunits in the ubiquinone side chain varies in different species. For example, Saccharomyces cerevisiae has 6 such subunits, Escherichia coli K-12 has 8, rat and mouse have 9, and Homo sapiens has 10. Ubiquinol-8 is effective as an anti-oxidant. By donating one of its hydrogen atoms to become the free-radical semiquinone (.Q-), it can neutralize a lipid peroxyl radical. The free-radical semiquinone is then restored to a non-free-radical state by the respiratory chain Q cycle. Ubiquinol or the free-radical semiquinone can also regenerate the Vitamin E tocopheroxyl radical by electron donation (http://www.benbest.com/nutrceut/CoEnzymeQ.html).
Nicotinamide adenine dinucleotide
C21H26N7O14P2- (662.1012936000001)
COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
beta-NADH
C21H27N7O14P2-2 (663.1091182000001)
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS