Reaction Process: PathBank:SMP0071772

Phosphatidylethanolamine Biosynthesis PE(18:3(6Z,9Z,12Z)/20:0) related metabolites

find 23 related metabolites which is associated with chemical reaction(pathway) Phosphatidylethanolamine Biosynthesis PE(18:3(6Z,9Z,12Z)/20:0)

CDP-DG(18:3(6Z,9Z,12Z)/20:0) + L-Serine ⟶ Cytidine monophosphate + PS(18:3(6Z,9Z,12Z)/20:0)

Adenosine triphosphate

({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid

C10H16N5O13P3 (506.9957476)


Adenosine triphosphate, also known as atp or atriphos, is a member of the class of compounds known as purine ribonucleoside triphosphates. Purine ribonucleoside triphosphates are purine ribobucleotides with a triphosphate group linked to the ribose moiety. Adenosine triphosphate is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Adenosine triphosphate can be found in a number of food items such as lichee, alpine sweetvetch, pecan nut, and black mulberry, which makes adenosine triphosphate a potential biomarker for the consumption of these food products. Adenosine triphosphate can be found primarily in blood, cellular cytoplasm, cerebrospinal fluid (CSF), and saliva, as well as throughout most human tissues. Adenosine triphosphate exists in all living species, ranging from bacteria to humans. In humans, adenosine triphosphate is involved in several metabolic pathways, some of which include phosphatidylethanolamine biosynthesis PE(16:0/18:4(6Z,9Z,12Z,15Z)), carteolol action pathway, phosphatidylethanolamine biosynthesis PE(20:3(5Z,8Z,11Z)/15:0), and carfentanil action pathway. Adenosine triphosphate is also involved in several metabolic disorders, some of which include lysosomal acid lipase deficiency (wolman disease), phosphoenolpyruvate carboxykinase deficiency 1 (PEPCK1), propionic acidemia, and the oncogenic action of d-2-hydroxyglutarate in hydroxygluaricaciduria. Moreover, adenosine triphosphate is found to be associated with rachialgia, neuroinfection, stroke, and subarachnoid hemorrhage. Adenosine triphosphate is a non-carcinogenic (not listed by IARC) potentially toxic compound. Adenosine triphosphate is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalanc. Adenosine triphosphate (ATP) is a complex organic chemical that participates in many processes. Found in all forms of life, ATP is often referred to as the "molecular unit of currency" of intracellular energy transfer. When consumed in metabolic processes, it converts to either the di- or monophosphates, respectively ADP and AMP. Other processes regenerate ATP such that the human body recycles its own body weight equivalent in ATP each day. It is also a precursor to DNA and RNA . ATP is able to store and transport chemical energy within cells. ATP also plays an important role in the synthesis of nucleic acids. ATP can be produced by various cellular processes, most typically in mitochondria by oxidative phosphorylation under the catalytic influence of ATP synthase. The total quantity of ATP in the human body is about 0.1 mole. The energy used by human cells requires the hydrolysis of 200 to 300 moles of ATP daily. This means that each ATP molecule is recycled 2000 to 3000 times during a single day. ATP cannot be stored, hence its consumption must closely follow its synthesis (DrugBank). Metabolism of organophosphates occurs principally by oxidation, by hydrolysis via esterases and by reaction with glutathione. Demethylation and glucuronidation may also occur. Oxidation of organophosphorus pesticides may result in moderately toxic products. In general, phosphorothioates are not directly toxic but require oxidative metabolism to the proximal toxin. The glutathione transferase reactions produce products that are, in most cases, of low toxicity. Paraoxonase (PON1) is a key enzyme in the metabolism of organophosphates. PON1 can inactivate some organophosphates through hydrolysis. PON1 hydrolyzes the active metabolites in several organophosphates insecticides as well as, nerve agents such as soman, sarin, and VX. The presence of PON1 polymorphisms causes there to be different enzyme levels and catalytic efficiency of this esterase, which in turn suggests that different individuals may be more susceptible to the toxic effect of organophosphate exposure (T3DB). ATP is an adenosine 5-phosphate in which the 5-phosphate is a triphosphate group. It is involved in the transportation of chemical energy during metabolic pathways. It has a role as a nutraceutical, a micronutrient, a fundamental metabolite and a cofactor. It is an adenosine 5-phosphate and a purine ribonucleoside 5-triphosphate. It is a conjugate acid of an ATP(3-). An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. Adenosine triphosphate is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Adenosine-5-triphosphate is a natural product found in Chlamydomonas reinhardtii, Arabidopsis thaliana, and other organisms with data available. Adenosine Triphosphate is an adenine nucleotide comprised of three phosphate groups esterified to the sugar moiety, found in all living cells. Adenosine triphosphate is involved in energy production for metabolic processes and RNA synthesis. In addition, this substance acts as a neurotransmitter. In cancer studies, adenosine triphosphate is synthesized to examine its use to decrease weight loss and improve muscle strength. Adenosine triphosphate (ATP) is a nucleotide consisting of a purine base (adenine) attached to the first carbon atom of ribose (a pentose sugar). Three phosphate groups are esterified at the fifth carbon atom of the ribose. ATP is incorporated into nucleic acids by polymerases in the processes of DNA replication and transcription. ATP contributes to cellular energy charge and participates in overall energy balance, maintaining cellular homeostasis. ATP can act as an extracellular signaling molecule via interactions with specific purinergic receptors to mediate a wide variety of processes as diverse as neurotransmission, inflammation, apoptosis, and bone remodelling. Extracellular ATP and its metabolite adenosine have also been shown to exert a variety of effects on nearly every cell type in human skin, and ATP seems to play a direct role in triggering skin inflammatory, regenerative, and fibrotic responses to mechanical injury, an indirect role in melanocyte proliferation and apoptosis, and a complex role in Langerhans cell-directed adaptive immunity. During exercise, intracellular homeostasis depends on the matching of adenosine triphosphate (ATP) supply and ATP demand. Metabolites play a useful role in communicating the extent of ATP demand to the metabolic supply pathways. Effects as different as proliferation or differentiation, chemotaxis, release of cytokines or lysosomal constituents, and generation of reactive oxygen or nitrogen species are elicited upon stimulation of blood cells with extracellular ATP. The increased concentration of adenosine triphosphate (ATP) in erythrocytes from patients with chronic renal failure (CRF) has been observed in many studies but the mechanism leading to these abnormalities still is controversial. (A3367, A3368, A3369, A3370, A3371). Adenosine triphosphate is a metabolite found in or produced by Saccharomyces cerevisiae. An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. Adenosine triphosphate (ATP) is a nucleotide consisting of a purine base (adenine) attached to the first carbon atom of ribose (a pentose sugar). Three phosphate groups are esterified at the fifth carbon atom of the ribose. ATP is incorporated into nucleic acids by polymerases in the processes of DNA replication and transcription. ATP contributes to cellular energy charge and participates in overall energy balance, maintaining cellular homeostasis. ATP can act as an extracellular signaling molecule via interactions with specific purinergic receptors to mediate a wide variety of processes as diverse as neurotransmission, inflammation, apoptosis, and bone remodelling. Extracellular ATP and its metabolite adenosine have also been shown to exert a variety of effects on nearly every cell type in human skin, and ATP seems to play a direct role in triggering skin inflammatory, regenerative, and fibrotic responses to mechanical injury, an indirect role in melanocyte proliferation and apoptosis, and a complex role in Langerhans cell-directed adaptive immunity. During exercise, intracellular homeostasis depends on the matching of adenosine triphosphate (ATP) supply and ATP demand. Metabolites play a useful role in communicating the extent of ATP demand to the metabolic supply pathways. Effects as different as proliferation or differentiation, chemotaxis, release of cytokines or lysosomal constituents, and generation of reactive oxygen or nitrogen species are elicited upon stimulation of blood cells with extracellular ATP. The increased concentration of adenosine triphosphate (ATP) in erythrocytes from patients with chronic renal failure (CRF) has been observed in many studies but the mechanism leading to these abnormalities still is controversial. (PMID: 15490415, 15129319, 14707763, 14696970, 11157473). 5′-ATP. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=56-65-5 (retrieved 2024-07-01) (CAS RN: 56-65-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Adenosine diphosphate

[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C10H15N5O10P2 (427.029415)


Adenosine diphosphate (ADP), also known as adenosine pyrophosphate (APP), is an important organic compound in metabolism and is essential to the flow of energy in living cells. ADP consists of three important structural components: a sugar backbone attached to adenine and two phosphate groups bonded to the 5 carbon atom of ribose. The diphosphate group of ADP is attached to the 5’ carbon of the sugar backbone, while the adenine attaches to the 1’ carbon. ADP belongs to the class of organic compounds known as purine ribonucleoside diphosphates. These are purine ribobucleotides with diphosphate group linked to the ribose moiety. It is an ester of pyrophosphoric acid with the nucleotide adenine. Adenosine diphosphate is a nucleotide. ADP exists in all living species, ranging from bacteria to humans. In humans, ADP is involved in d4-gdi signaling pathway. ADP is the product of ATP dephosphorylation by ATPases. ADP is converted back to ATP by ATP synthases. ADP consists of the pyrophosphate group, the pentose sugar ribose, and the nucleobase adenine. Adenosine diphosphate, abbreviated ADP, is a nucleotide. It is an ester of pyrophosphoric acid with the nucleotide adenine. ADP consists of the pyrophosphate group, the pentose sugar ribose, and the nucleobase adenine. 5′-ADP. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-64-0 (retrieved 2024-07-01) (CAS RN: 58-64-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine 5'-diphosphate (Adenosine diphosphate) is a nucleoside diphosphate. Adenosine 5'-diphosphate is the product of ATP dephosphorylation by ATPases. Adenosine 5'-diphosphate induces human platelet aggregation and inhibits stimulated adenylate cyclase by an action at P2T-purinoceptors. Adenosine 5'-diphosphate (Adenosine diphosphate) is a nucleoside diphosphate. Adenosine 5'-diphosphate is the product of ATP dephosphorylation by ATPases. Adenosine 5'-diphosphate induces human platelet aggregation and inhibits stimulated adenylate cyclase by an action at P2T-purinoceptors.

   

Coenzyme A

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-({2-[(2-sulfanylethyl)carbamoyl]ethyl}carbamoyl)propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C21H36N7O16P3S (767.1152046)


Coenzyme A (CoA, CoASH, or HSCoA) is a coenzyme notable for its role in the synthesis and oxidization of fatty acids and the oxidation of pyruvate in the citric acid cycle. It is adapted from beta-mercaptoethylamine, panthothenate, and adenosine triphosphate. It is also a parent compound for other transformation products, including but not limited to, phenylglyoxylyl-CoA, tetracosanoyl-CoA, and 6-hydroxyhex-3-enoyl-CoA. Coenzyme A is synthesized in a five-step process from pantothenate and cysteine. In the first step pantothenate (vitamin B5) is phosphorylated to 4-phosphopantothenate by the enzyme pantothenate kinase (PanK, CoaA, CoaX). In the second step, a cysteine is added to 4-phosphopantothenate by the enzyme phosphopantothenoylcysteine synthetase (PPC-DC, CoaB) to form 4-phospho-N-pantothenoylcysteine (PPC). In the third step, PPC is decarboxylated to 4-phosphopantetheine by phosphopantothenoylcysteine decarboxylase (CoaC). In the fourth step, 4-phosphopantetheine is adenylylated to form dephospho-CoA by the enzyme phosphopantetheine adenylyl transferase (CoaD). Finally, dephospho-CoA is phosphorylated using ATP to coenzyme A by the enzyme dephosphocoenzyme A kinase (CoaE). Since coenzyme A is, in chemical terms, a thiol, it can react with carboxylic acids to form thioesters, thus functioning as an acyl group carrier. CoA assists in transferring fatty acids from the cytoplasm to the mitochondria. A molecule of coenzyme A carrying an acetyl group is also referred to as acetyl-CoA. When it is not attached to an acyl group, it is usually referred to as CoASH or HSCoA. Coenzyme A is also the source of the phosphopantetheine group that is added as a prosthetic group to proteins such as acyl carrier proteins and formyltetrahydrofolate dehydrogenase. Acetyl-CoA is an important molecule itself. It is the precursor to HMG CoA which is a vital component in cholesterol and ketone synthesis. Furthermore, it contributes an acetyl group to choline to produce acetylcholine in a reaction catalysed by choline acetyltransferase. Its main task is conveying the carbon atoms within the acetyl group to the citric acid cycle to be oxidized for energy production (Wikipedia). Coenzyme A (CoA, CoASH, or HSCoA) is a coenzyme, notable for its role in the synthesis and oxidization of fatty acids, and the oxidation of pyruvate in the citric acid cycle. It is adapted from beta-mercaptoethylamine, panthothenate and adenosine triphosphate. Acetyl-CoA is an important molecule itself. It is the precursor to HMG CoA, which is a vital component in cholesterol and ketone synthesis. Furthermore, it contributes an acetyl group to choline to produce acetylcholine, in a reaction catalysed by choline acetyltransferase. Its main task is conveying the carbon atoms within the acetyl group to the citric acid cycle to be oxidized for energy production. -- Wikipedia [HMDB]. Coenzyme A is found in many foods, some of which are grape, cowpea, pili nut, and summer savory. Coenzyme A (CoASH) is a ubiquitous and essential cofactor, which is an acyl group carrier and carbonyl-activating group for the citric acid cycle and fatty acid metabolism. Coenzyme A plays a central role in the oxidation of pyruvate in the citric acid cycle and the metabolism of carboxylic acids, including short- and long-chain fatty acids[1]. Coenzyme A (CoASH) is a ubiquitous and essential cofactor, which is an acyl group carrier and carbonyl-activating group for the citric acid cycle and fatty acid metabolism. Coenzyme A plays a central role in the oxidation of pyruvate in the citric acid cycle and the metabolism of carboxylic acids, including short- and long-chain fatty acids[1]. Coenzyme A, a ubiquitous essential cofactor, is an acyl group carrier and carbonyl-activating group for the citric acid cycle and fatty acid metabolism. Coenzyme A plays a central role in the metabolism of carboxylic acids, including short- and long-chain fatty acids. Coenzyme A. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=85-61-0 (retrieved 2024-10-17) (CAS RN: 85-61-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

L-Serine

(2S)-2-amino-3-hydroxypropanoic acid

C3H7NO3 (105.0425912)


Serine (Ser) or L-serine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-serine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Serine is found in all organisms ranging from bacteria to plants to animals. It is classified as a polar, uncharged (at physiological pH), aliphatic amino acid. In humans, serine is a nonessential amino acid that can be easily derived from glycine. A non-essential amino acid is an amino acid that can be synthesized from central metabolic pathway intermediates in humans and is not required in the diet. Like all the amino acid building blocks of protein and peptides, serine can become essential under certain conditions, and is thus important in maintaining health and preventing disease. L-Serine may be derived from four possible sources: dietary intake; biosynthesis from the glycolytic intermediate 3-phosphoglycerate; from glycine; and by protein and phospholipid degradation. Little data is available on the relative contributions of each of these four sources of l-serine to serine homoeostasis. It is very likely that the predominant source of l-serine will be very different in different tissues and during different stages of human development. In the biosynthetic pathway, the glycolytic intermediate 3-phosphoglycerate is converted into phosphohydroxypyruvate, in a reaction catalyzed by 3-phosphoglycerate dehydrogenase (3- PGDH; EC 1.1.1.95). Phosphohydroxypyruvate is metabolized to phosphoserine by phosphohydroxypyruvate aminotransferase (EC 2.6.1.52) and, finally, phosphoserine is converted into l-serine by phosphoserine phosphatase (PSP; EC 3.1.3.3). In liver tissue, the serine biosynthetic pathway is regulated in response to dietary and hormonal changes. Of the three synthetic enzymes, the properties of 3-PGDH and PSP are the best documented. Hormonal factors such as glucagon and corticosteroids also influence 3-PGDH and PSP activities in interactions dependent upon the diet. L-serine is the predominant source of one-carbon groups for the de novo synthesis of purine nucleotides and deoxythymidine monophosphate. It has long been recognized that, in cell cultures, L-serine is a conditional essential amino acid, because it cannot be synthesized in sufficient quantities to meet the cellular demands for its utilization. In recent years, L-serine and the products of its metabolism have been recognized not only to be essential for cell proliferation, but also to be necessary for specific functions in the central nervous system. The findings of altered levels of serine and glycine in patients with psychiatric disorders and the severe neurological abnormalities in patients with defects of L-serine synthesis underscore the importance of L-serine in brain development and function. (PMID 12534373). [Spectral] L-Serine (exact mass = 105.04259) and D-2-Aminobutyrate (exact mass = 103.06333) and 4-Aminobutanoate (exact mass = 103.06333) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Dietary supplement. L-Serine is found in many foods, some of which are cold cut, mammee apple, coho salmon, and carrot. L-Serine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=56-45-1 (retrieved 2024-07-01) (CAS RN: 56-45-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation. L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation.

   

Phosphoethanolamine

2-Aminoethyl dihydrogen phosphate (acd/name 4.0)

C2H8NO4P (141.0190938)


O-Phosphoethanolamine, also known as PEA, phosphorylethanolamine, colamine phosphoric acid or ethanolamine O-phosphate, belongs to the class of organic compounds known as phosphoethanolamines. Phosphoethanolamines are compounds containing a phosphate linked to the second carbon of an ethanolamine. O-Phosphoethanolamine is used in the biosynthesis of two different types of phospholipids: glycerophospholipids and sphingolipids. O-Phosphoethanolamine exists in all living species, ranging from bacteria to plants to humans. Within humans, O-phosphoethanolamine participates in a number of enzymatic reactions. In particular, cytidine triphosphate and O-phosphoethanolamine can be converted into CDP-ethanolamine; which is mediated by the enzyme ethanolamine-phosphate cytidylyltransferase. In addition, O-phosphoethanolamine can be biosynthesized from ethanolamine; which is catalyzed by the enzyme choline/ethanolamine kinase. In humans, O-phosphoethanolamine is involved in phosphatidylcholine biosynthesis. O-phosphoethanolamine is also a product of the metabolism of sphingolipids. In particular, sphinglipids are metabolized in vivo to phosphorylethanolamine and a fatty aldehyde, generally palmitaldehyde. Both metabolites are ultimately converted to glycerophospholipids. The lipids are first phosphorylated by a kinase and then cleaved by the pyridoxal-dependent sphinganine-1-phosphate aldolase. Elevated urine levels of O-Phosphoethanolamine or PEA can be used to help in the diagnosis of Hypophosphatasia (HPP). Reference ranges for urinary PEA vary according to age and somewhat by diet, and follow a circadian rhythm. Outside of the human body, O-phosphoethanolamine has been detected, but not quantified in, several different foods, such as oxheart cabbages, anises, shiitakes, abalones, and teffs. Phosphoryl-ethanolamine, also known as colamine phosphoric acid or ethanolamine phosphate, is a member of the class of compounds known as phosphoethanolamines. Phosphoethanolamines are compounds containing a phosphate linked to the second carbon of an ethanolamine. Phosphoryl-ethanolamine is soluble (in water) and a moderately acidic compound (based on its pKa). Phosphoryl-ethanolamine can be found in a number of food items such as pepper (capsicum), black salsify, cascade huckleberry, and redcurrant, which makes phosphoryl-ethanolamine a potential biomarker for the consumption of these food products. Phosphoryl-ethanolamine can be found primarily in most biofluids, including cerebrospinal fluid (CSF), blood, saliva, and feces. Phosphoryl-ethanolamine exists in all living species, ranging from bacteria to humans. In humans, phosphoryl-ethanolamine is involved in several metabolic pathways, some of which include phosphatidylethanolamine biosynthesis PE(22:5(4Z,7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,16Z)), phosphatidylethanolamine biosynthesis PE(14:0/20:1(11Z)), phosphatidylethanolamine biosynthesis PE(20:2(11Z,14Z)/20:3(8Z,11Z,14Z)), and phosphatidylethanolamine biosynthesis PE(22:5(7Z,10Z,13Z,16Z,19Z)/16:1(9Z)). Phosphoryl-ethanolamine is also involved in few metabolic disorders, which include fabry disease, gaucher disease, and krabbe disease. Moreover, phosphoryl-ethanolamine is found to be associated with traumatic brain injury. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID E009 Phosphorylethanolamine is an endogenous metabolite. Phosphorylethanolamine is an endogenous metabolite.

   

Glycerol 3-phosphate

alpha-Glycerophosphoric acid, 1,2,3-propanetriol-1-(18)O,3-(dihydrogen phosphate)-labeled

C3H9O6P (172.0136744)


Glycerol 3-phosphate, also known as glycerophosphoric acid or alpha-glycerophosphorate, is a member of the class of compounds known as glycerophosphates. Glycerophosphates are compounds containing a glycerol linked to a phosphate group. Glycerol 3-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). Glycerol 3-phosphate can be found in a number of food items such as sacred lotus, common oregano, mixed nuts, and yautia, which makes glycerol 3-phosphate a potential biomarker for the consumption of these food products. Glycerol 3-phosphate can be found primarily in blood, feces, saliva, and urine, as well as in human prostate tissue. Glycerol 3-phosphate exists in all living species, ranging from bacteria to humans. In humans, glycerol 3-phosphate is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-12:0/i-21:0/a-21:0/i-21:0), cardiolipin biosynthesis cl(i-12:0/a-25:0/i-13:0/i-12:0), cardiolipin biosynthesis cl(i-13:0/i-21:0/i-21:0/a-25:0), and cardiolipin biosynthesis cl(i-13:0/a-25:0/i-18:0/a-13:0). Glycerol 3-phosphate is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis tg(i-24:0/19:0/16:0), de novo triacylglycerol biosynthesis TG(16:0/22:4(7Z,10Z,13Z,16Z)/16:1(9Z)), de novo triacylglycerol biosynthesis TG(18:0/18:3(9Z,12Z,15Z)/14:1(9Z)), and de novo triacylglycerol biosynthesis TG(18:3(6Z,9Z,12Z)/22:5(4Z,7Z,10Z,13Z,16Z)/20:2(11Z,14Z)). Glycerol 3-phosphate is a chemical intermediate in the glycolysis metabolic pathway. It is commonly confused with the similarly named glycerate 3-phosphate or glyceraldehyde 3-phosphate. Glycerol 3-phosphate is produced from glycerol, the triose sugar backbone of triglycerides and glycerophospholipids, by the enzyme glycerol kinase. Glycerol 3-phospate may then be converted by dehydrogenation to dihydroxyacetone phosphate (DHAP) by the enzyme glycerol-3-phosphate dehydrogenase. DHAP can then be rearranged into glyceraldehyde 3-phosphate (GA3P) by triose phosphate isomerase (TIM), and feed into glycolysis. The glycerol 3-phosphate shuttle is used to rapidly regenerate NAD+ in the brain and skeletal muscle cells of mammals (wikipedia). Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID G072

   

Cytidine monophosphate

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C9H14N3O8P (323.05184940000004)


Cytidine monophosphate, also known as 5-cytidylic acid and abbreviated CMP, is a nucleotide. It is an ester of phosphoric acid with the nucleoside cytidine. CMP consists of the phosphate group, the pentose sugar ribose, and the nucleobase cytosine. Cytidine monophosphate (CMP) is derived from cytidine triphosphate (CTP) with subsequent loss of two phosphates. The synthesis of the pyrimidines CTP and UTP occurs in the cytoplasm and starts with the formation of carbamoyl phosphate from glutamine and CO2. Next, aspartate undergoes a condensation reaction with carbamoyl-phosphate to form orotic acid. In a subsequent cyclization reaction, the enzyme Aspartate carbamoyltransferase forms N-carbamoyl-aspartate which is converted into dihydroorotic acid by Dihydroorotase. The latter is converted to orotate by Dihydroorotate oxidase. Orotate is covalently linked with a phosphorylated ribosyl unit with Orotate phosphoribosyltransferase (aka "PRPP transferase") catalyzing reaction, yielding orotidine monophosphate (OMP). Orotidine-5-phosphate is decarboxylated by Orotidine-5-phosphate decarboxylase to form uridine monophosphate (UMP). UMP is phosphorylated by two kinases to uridine triphosphate (UTP) via two sequential reactions with ATP. CTP is subsequently formed by amination of UTP by the catalytic activity of CTP synthetase. Cytosine monophosphate (CMP) and uridine monophosphate (UMP) have been prescribed for the treatment of neuromuscular affections in humans. Patients treated with CMP/UMP recover from altered neurological functions. Additionally, the administration of CMP/UMP appears to favour the entry of glucose in the muscle and CMP/UMP may be important in maintaining the level of hepatic glycogen constant during exercise. [PMID:18663991]. Cytidine monophosphate, also known as cmp or cytidylic acid, is a member of the class of compounds known as pyrimidine ribonucleoside monophosphates. Pyrimidine ribonucleoside monophosphates are pyrimidine ribobucleotides with monophosphate group linked to the ribose moiety. Cytidine monophosphate is soluble (in water) and a moderately acidic compound (based on its pKa). Cytidine monophosphate can be found in a number of food items such as elliotts blueberry, small-leaf linden, orange mint, and malabar spinach, which makes cytidine monophosphate a potential biomarker for the consumption of these food products. Cytidine monophosphate can be found primarily in saliva, as well as throughout all human tissues. Cytidine monophosphate exists in all living species, ranging from bacteria to humans. In humans, cytidine monophosphate is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-13:0/i-18:0/i-17:0/18:2(9z,11z)), cardiolipin biosynthesis cl(i-13:0/i-24:0/a-21:0/i-15:0), cardiolipin biosynthesis cl(i-13:0/i-22:0/i-20:0/i-15:0), and cardiolipin biosynthesis cl(i-12:0/a-17:0/i-20:0/a-21:0). Cytidine monophosphate is also involved in several metabolic disorders, some of which include beta ureidopropionase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), UMP synthase deficiency (orotic aciduria), and dihydropyrimidinase deficiency. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Cytidine 5'-monophosphate (5'-Cytidylic acid) is a nucleotide which is used as a monomer in RNA. Cytidine 5'-monophosphate consists of the nucleobase cytosine, the pentose sugar ribose, and the phosphate group[1]. Cytidine 5'-monophosphate (5'-Cytidylic acid) is a nucleotide which is used as a monomer in RNA. Cytidine 5'-monophosphate consists of the nucleobase cytosine, the pentose sugar ribose, and the phosphate group[1].

   

Ethanolamine

Envision conditioner PDD 9020

C2H7NO (61.0527612)


Ethanolamine (MEA), also known as monoethanolamine, aminoethanol or glycinol, belongs to the class of organic compounds known as 1,2-aminoalcohols (or simply aminoalcohols). These are organic compounds containing an alkyl chain with an amine group bound to the C1 atom and an alcohol group bound to the C2 atom. Ethanolamine is a colorless, viscous liquid with an odor reminiscent of ammonia. In pharmaceutical formulations, ethanolamine is used primarily for buffering or preparation of emulsions. Ethanolamine can also be used as pH regulator in cosmetics. Biologically, ethanolamine is an initial precursor for the biosynthesis of two primary phospholipid classes, phosphatidylcholine (PC) and phosphatidylethanolamine (PE). In this regard, ethanolamine is the second-most-abundant head group for phospholipids. Ethanolamine serves as a precursor for a variety of N-acylethanolamines (NAEs). These are molecules that modulate several animal and plant physiological processes such as seed germination, plant–pathogen interactions, chloroplast development and flowering (PMID: 30190434). Ethanolamine, when combined with arachidonic acid (C20H32O2; 20:4, ω-6), can also form the endocannabinoid anandamide. Ethanolamine can be converted to phosphoethanolamine via the enzyme known as ethanolamine kinase. the two substrates of this enzyme are ATP and ethanolamine, whereas its two products are ADP and O-phosphoethanolamine. In most plants ethanolamine is biosynthesized by decarboxylation of serine via a pyridoxal 5-phosphate-dependent l-serine decarboxylase (SDC). Ethanolamine exists in all living species, ranging from bacteria to plants to humans. Ethanolamine has been detected, but not quantified in, several different foods, such as narrowleaf cattails, mung beans, blackcurrants, white cabbages, and bilberries. Ethanolamine, also known as aminoethanol or beta-aminoethyl alcohol, is a member of the class of compounds known as 1,2-aminoalcohols. 1,2-aminoalcohols are organic compounds containing an alkyl chain with an amine group bound to the C1 atom and an alcohol group bound to the C2 atom. Ethanolamine is soluble (in water) and an extremely weak acidic compound (based on its pKa). Ethanolamine can be found in a number of food items such as daikon radish, caraway, muscadine grape, and lemon grass, which makes ethanolamine a potential biomarker for the consumption of these food products. Ethanolamine can be found primarily in most biofluids, including urine, cerebrospinal fluid (CSF), feces, and saliva, as well as throughout most human tissues. Ethanolamine exists in all living species, ranging from bacteria to humans. In humans, ethanolamine is involved in several metabolic pathways, some of which include phosphatidylcholine biosynthesis PC(20:3(5Z,8Z,11Z)/18:3(6Z,9Z,12Z)), phosphatidylcholine biosynthesis PC(22:5(7Z,10Z,13Z,16Z,19Z)/18:3(6Z,9Z,12Z)), phosphatidylcholine biosynthesis PC(20:4(5Z,8Z,11Z,14Z)/20:0), and phosphatidylethanolamine biosynthesis PE(11D5/9M5). Moreover, ethanolamine is found to be associated with maple syrup urine disease and propionic acidemia. Ethanolamine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Ethanolamine, also called 2-aminoethanol or monoethanolamine (often abbreviated as ETA or MEA), is an organic chemical compound with the formula HOCH2CH2NH2. The molecule is both a primary amine and a primary alcohol (due to a hydroxyl group). Ethanolamine is a colorless, viscous liquid with an odor reminiscent to that of ammonia. Its derivatives are widespread in nature; e.g., lipids . C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist KEIO_ID E023

   

Dihydroxyacetone phosphate

1,3-Dihydroxy-2-propanone monodihydrogen phosphoric acid

C3H7O6P (169.9980252)


An important intermediate in lipid biosynthesis and in glycolysis.; Dihydroxyacetone phosphate (DHAP) is a biochemical compound involved in many reactions, from the Calvin cycle in plants to the ether-lipid biosynthesis process in Leishmania mexicana. Its major biochemical role is in the glycolysis metabolic pathway. DHAP may be referred to as glycerone phosphate in older texts.; Dihydroxyacetone phosphate lies in the glycolysis metabolic pathway, and is one of the two products of breakdown of fructose 1,6-phosphate, along with glyceraldehyde 3-phosphate. It is rapidly and reversibly isomerised to glyceraldehyde 3-phosphate.; In the Calvin cycle, DHAP is one of the products of the sixfold reduction of 1,3-bisphosphoglycerate by NADPH. It is also used in the synthesis of sedoheptulose 1,7-bisphosphate and fructose 1,6-bisphosphate which are both used to reform ribulose 5-phosphate, the key carbohydrate of the Calvin cycle. Dihydroxyacetone phosphate is found in many foods, some of which are sesame, mexican groundcherry, parsley, and common wheat. [Spectral] Glycerone phosphate (exact mass = 169.99802) and beta-D-Fructose 1,6-bisphosphate (exact mass = 339.99605) and NADP+ (exact mass = 743.07545) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Dihydroxyacetone phosphate is an important intermediate in lipid biosynthesis and in glycolysis. Dihydroxyacetone phosphate is found to be associated with transaldolase deficiency, which is an inborn error of metabolism. Dihydroxyacetone phosphate has been identified in the human placenta (PMID: 32033212). KEIO_ID D014

   

Nadide

beta-Nicotinamide adenine dinucleotide hydrate

[C21H28N7O14P2]+ (664.1169428000001)


[Spectral] NAD+ (exact mass = 663.10912) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) and Cytidine (exact mass = 243.08552) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] NAD+ (exact mass = 663.10912) and NADP+ (exact mass = 743.07545) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

1,4-Dihydronicotinamide adenine dinucleotide

Dihydronicotinamide-adenine dinucleotide

C21H29N7O14P2 (665.1247674)


Nicotinamide adenine dinucleotide (NAD) is a coenzyme central to metabolism. Found in all living cells, NAD is called a dinucleotide because it consists of two nucleotides joined through their phosphate groups. One nucleotide contains an adenine nucleobase and the other nicotinamide. NAD exists in two forms: an oxidized and reduced form, abbreviated as NAD+ and NADH (H for hydrogen) respectively. NADH is the reduced form of NAD+, and NAD+ is the oxidized form of NADH. NAD (or nicotinamide adenine dinucleotide) is used extensively in glycolysis and the citric acid cycle of cellular respiration. The reducing potential stored in NADH can be either converted into ATP through the electron transport chain or used for anabolic metabolism. ATP "energy" is necessary for an organism to live. Green plants obtain ATP through photosynthesis, while other organisms obtain it via cellular respiration. NAD is a coenzyme composed of ribosylnicotinamide 5-diphosphate coupled to adenosine 5-phosphate by a pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). NADP is formed through the addition of a phosphate group to the 2 position of the adenosyl nucleotide through an ester linkage. NADH is the reduced form of NAD+, and NAD+ is the oxidized form of NADH, A coenzyme composed of ribosylnicotinamide 5-diphosphate coupled to adenosine 5-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). It forms NADP with the addition of a phosphate group to the 2 position of the adenosyl nucleotide through an ester linkage.(Dorland, 27th ed) [HMDB]. NADH is found in many foods, some of which are dill, ohelo berry, fox grape, and black-eyed pea. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Cytidine triphosphate

({[({[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid

C9H16N3O14P3 (482.9845146)


Cytidine triphosphate (CTP), also known as 5-CTP, is pyrimidine nucleoside triphosphate. Formally, CTP is an ester of cytidine and triphosphoric acid. It belongs to the class of organic compounds known as pentose phosphates. These are carbohydrate derivatives containing a pentose substituted by one or more phosphate groups. CTP, much like ATP, consists of a base (cytosine), a ribose sugar, and three phosphate groups. CTP is a high-energy molecule similar to ATP, but its role as an energy coupler is limited to a much smaller subset of metabolic reactions. CTP exists in all living species, ranging from bacteria to plants to humans and is used in the synthesis of RNA via RNA polymerase. Another enzyme known as cytidine triphosphate synthetase (CTPS) mediates the conversion of uridine triphosphate (UTP) into cytidine triphosphate (CTP) which is the rate-limiting step of de novo CTP biosynthesis. CTPS catalyzes a complex set of reactions that include the ATP-dependent transfer of the amide nitrogen from glutamine (i.e., glutaminase reaction) to the C-4 position of UTP to generate CTP. GTP stimulates the glutaminase reaction by accelerating the formation of a covalent glutaminyl enzyme intermediate. CTPS activity regulates the intracellular rates of RNA synthesis, DNA synthesis, and phospholipid synthesis. CTPS is an established target for a number of antiviral, antineoplastic, and antiparasitic drugs. CTP also acts as an inhibitor of the enzyme known as aspartate carbamoyltransferase, which is used in pyrimidine biosynthesis. CTP also reacts with nitrogen-containing alcohols to form coenzymes that participate in the formation of phospholipids. In particular, CTP is the direct precursor of the activated, phospholipid pathway intermediates CDP-diacylglycerol, CDP-choline, and CDP-ethanolamine ((PMID: 18439916). CDP-diacylglycerol is the source of the phosphatidyl moiety for phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine (synthesized by way of the CDP-diacylglycerol pathway) as well as phosphatidylglycerol, cardiolipin, and phosphatidylinositol (PMID: 18439916). Cytidine triphosphate, also known as 5-ctp or cytidine 5-triphosphoric acid, is a member of the class of compounds known as pentose phosphates. Pentose phosphates are carbohydrate derivatives containing a pentose substituted by one or more phosphate groups. Cytidine triphosphate is soluble (in water) and an extremely strong acidic compound (based on its pKa). Cytidine triphosphate can be found in a number of food items such as lowbush blueberry, black radish, american pokeweed, and cherry tomato, which makes cytidine triphosphate a potential biomarker for the consumption of these food products. Cytidine triphosphate can be found primarily in cellular cytoplasm, as well as throughout all human tissues. Cytidine triphosphate exists in all living species, ranging from bacteria to humans. In humans, cytidine triphosphate is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-14:0/i-17:0/i-16:0/i-21:0), cardiolipin biosynthesis cl(a-13:0/a-21:0/i-22:0/i-17:0), phosphatidylethanolamine biosynthesis PE(18:2(9Z,12Z)/24:0), and cardiolipin biosynthesis cl(i-13:0/a-21:0/a-15:0/i-16:0). Cytidine triphosphate is also involved in several metabolic disorders, some of which include sialuria or french type sialuria, tay-sachs disease, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and g(m2)-gangliosidosis: variant B, tay-sachs disease. Cytidine triphosphate is a high-energy molecule similar to ATP, but its role as an energy coupler is limited to a much smaller subset of metabolic reactions. Cytidine triphosphate is a coenzyme in metabolic reactions like the synthesis of glycerophospholipids and glycosylation of proteins . Cytidine 5′-triphosphate (Cytidine triphosphate; 5'-CTP) is a nucleoside triphosphate and serves as a building block for nucleotides and nucleic acids, lipid biosynthesis. Cytidine triphosphate synthase can catalyze the formation of cytidine 5′-triphosphate from uridine 5′-triphosphate (UTP). Cytidine 5′-triphosphate is an essential biomolecule?in the de novo?pyrimidine biosynthetic pathway in?T. gondii[1].

   

Water

oxidane

H2O (18.0105642)


Water is a chemical substance that is essential to all known forms of life. It appears colorless to the naked eye in small quantities, though it is actually slightly blue in color. It covers 71\\% of Earths surface. Current estimates suggest that there are 1.4 billion cubic kilometers (330 million m3) of it available on Earth, and it exists in many forms. It appears mostly in the oceans (saltwater) and polar ice caps, but it is also present as clouds, rain water, rivers, freshwater aquifers, lakes, and sea ice. Water in these bodies perpetually moves through a cycle of evaporation, precipitation, and runoff to the sea. Clean water is essential to human life. In many parts of the world, it is in short supply. From a biological standpoint, water has many distinct properties that are critical for the proliferation of life that set it apart from other substances. It carries out this role by allowing organic compounds to react in ways that ultimately allow replication. All known forms of life depend on water. Water is vital both as a solvent in which many of the bodys solutes dissolve and as an essential part of many metabolic processes within the body. Metabolism is the sum total of anabolism and catabolism. In anabolism, water is removed from molecules (through energy requiring enzymatic chemical reactions) in order to grow larger molecules (e.g. starches, triglycerides and proteins for storage of fuels and information). In catabolism, water is used to break bonds in order to generate smaller molecules (e.g. glucose, fatty acids and amino acids to be used for fuels for energy use or other purposes). Water is thus essential and central to these metabolic processes. Water is also central to photosynthesis and respiration. Photosynthetic cells use the suns energy to split off waters hydrogen from oxygen. Hydrogen is combined with CO2 (absorbed from air or water) to form glucose and release oxygen. All living cells use such fuels and oxidize the hydrogen and carbon to capture the suns energy and reform water and CO2 in the process (cellular respiration). Water is also central to acid-base neutrality and enzyme function. An acid, a hydrogen ion (H+, that is, a proton) donor, can be neutralized by a base, a proton acceptor such as hydroxide ion (OH-) to form water. Water is considered to be neutral, with a pH (the negative log of the hydrogen ion concentration) of 7. Acids have pH values less than 7 while bases have values greater than 7. Stomach acid (HCl) is useful to digestion. However, its corrosive effect on the esophagus during reflux can temporarily be neutralized by ingestion of a base such as aluminum hydroxide to produce the neutral molecules water and the salt aluminum chloride. Human biochemistry that involves enzymes usually performs optimally around a biologically neutral pH of 7.4. (Wikipedia). Water, also known as purified water or dihydrogen oxide, is a member of the class of compounds known as homogeneous other non-metal compounds. Homogeneous other non-metal compounds are inorganic non-metallic compounds in which the largest atom belongs to the class of other nonmetals. Water can be found in a number of food items such as caraway, oxheart cabbage, alaska wild rhubarb, and japanese walnut, which makes water a potential biomarker for the consumption of these food products. Water can be found primarily in most biofluids, including ascites Fluid, blood, cerebrospinal fluid (CSF), and lymph, as well as throughout all human tissues. Water exists in all living species, ranging from bacteria to humans. In humans, water is involved in several metabolic pathways, some of which include cardiolipin biosynthesis CL(20:4(5Z,8Z,11Z,14Z)/18:0/20:4(5Z,8Z,11Z,14Z)/18:2(9Z,12Z)), cardiolipin biosynthesis cl(i-13:0/i-15:0/i-20:0/i-24:0), cardiolipin biosynthesis CL(18:0/18:0/20:4(5Z,8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z)), and cardiolipin biosynthesis cl(a-13:0/i-18:0/i-13:0/i-19:0). Water is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis tg(i-21:0/i-13:0/21:0), de novo triacylglycerol biosynthesis tg(22:0/20:0/i-20:0), de novo triacylglycerol biosynthesis tg(a-21:0/i-20:0/i-14:0), and de novo triacylglycerol biosynthesis tg(i-21:0/a-17:0/i-12:0). Water is a drug which is used for diluting or dissolving drugs for intravenous, intramuscular or subcutaneous injection, according to instructions of the manufacturer of the drug to be administered [fda label]. Water plays an important role in the world economy. Approximately 70\\% of the freshwater used by humans goes to agriculture. Fishing in salt and fresh water bodies is a major source of food for many parts of the world. Much of long-distance trade of commodities (such as oil and natural gas) and manufactured products is transported by boats through seas, rivers, lakes, and canals. Large quantities of water, ice, and steam are used for cooling and heating, in industry and homes. Water is an excellent solvent for a wide variety of chemical substances; as such it is widely used in industrial processes, and in cooking and washing. Water is also central to many sports and other forms of entertainment, such as swimming, pleasure boating, boat racing, surfing, sport fishing, and diving .

   

Carbon dioxide

Carbonic acid anhydride

CO2 (43.98983)


Carbon dioxide is a colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbon dioxide is produced during respiration by all animals, fungi and microorganisms that depend on living and decaying plants for food, either directly or indirectly. It is, therefore, a major component of the carbon cycle. Additionally, carbon dioxide is used by plants during photosynthesis to make sugars which may either be consumed again in respiration or used as the raw material to produce polysaccharides such as starch and cellulose, proteins and the wide variety of other organic compounds required for plant growth and development. When inhaled at concentrations much higher than usual atmospheric levels, it can produce a sour taste in the mouth and a stinging sensation in the nose and throat. These effects result from the gas dissolving in the mucous membranes and saliva, forming a weak solution of carbonic acid. Carbon dioxide is used by the food industry, the oil industry, and the chemical industry. Carbon dioxide is used to produce carbonated soft drinks and soda water. Traditionally, the carbonation in beer and sparkling wine comes about through natural fermentation, but some manufacturers carbonate these drinks artificially. Leavening agent, propellant, aerating agent, preservative. Solvent for supercritical extraction e.g. of caffeine in manufacture of caffeine-free instant coffee. It is used in carbonation of beverages, in the frozen food industry and as a component of controlled atmosphere packaging (CAD) to inhibit bacterial growth. Especies effective against Gram-negative spoilage bacteria, e.g. Pseudomonas V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases

   

CDP-ethanolamine

(2-aminoethoxy)[({[(2R,3S,4R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphinic acid

C11H20N4O11P2 (446.06037899999995)


CDP-ethanolamine, also known as cytidine 5’-diphosphoethanolamine, belongs to the class of organic compounds known as CDP-ethanolamines. These are phosphoethanolamines that consist of an ethanolamine having a cytidine 5-diphosphate moiety attached to the oxygen. CDP-ethanolamine is a very strong basic compound (based on its pKa). In humans, CDP-ethanolamine is involved in phosphatidylethanolamine biosynthesis. Outside of the human body, CDP-ethanolamine has been detected, but not quantified in, several different foods, such as Chinese water chestnuts, buffalo currants, red huckleberries, eggplants, and brazil nuts. This could make CDP-ethanolamine a potential biomarker for the consumption of these foods. Cytidine is a molecule (known as a nucleoside) that is formed when cytosine is attached to a ribose ring (also known as a ribofuranose) via a beta-N1-glycosidic bond. [HMDB]. CDP-Ethanolamine is found in many foods, some of which are allspice, hedge mustard, wasabi, and green vegetables.

   

Gamma-linolenoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-{[2-({2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C39H64N7O17P3S (1027.3292084)


Gamma-linolenoyl-CoA is the product of a chemical reaction that involves linoleoyl-CoA desaturase which acts as a catalyst. In enzymology, linoleoyl-CoA desaturase (EC 1.14.19.3) is an enzyme that catalyzes the chemical reaction. linoleoyl-CoA + AH2 + O2 gamma-linolenoyl-CoA + A + 2 H2O. The 3 substrates of this enzyme are linoleoyl-CoA, AH2, and O2, whereas its 3 products are gamma-linolenoyl-CoA, A, and H2O. (Wikipedia). gamma-Linolenoyl-CoA is the product of a chemical reaction that involves linoleoyl-CoA desaturase which acts as a catalyst. In enzymology, linoleoyl-CoA desaturase (EC 1.14.19.3) is an enzyme that catalyzes the chemical reaction

   

Hydrogen Ion

Hydrogen cation

H+ (1.0078246)


Hydrogen ion, also known as proton or h+, is a member of the class of compounds known as other non-metal hydrides. Other non-metal hydrides are inorganic compounds in which the heaviest atom bonded to a hydrogen atom is belongs to the class of other non-metals. Hydrogen ion can be found in a number of food items such as lowbush blueberry, groundcherry, parsley, and tarragon, which makes hydrogen ion a potential biomarker for the consumption of these food products. Hydrogen ion exists in all living organisms, ranging from bacteria to humans. In humans, hydrogen ion is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-13:0/a-25:0/a-21:0/i-15:0), cardiolipin biosynthesis cl(a-13:0/a-17:0/i-13:0/a-25:0), cardiolipin biosynthesis cl(i-12:0/i-13:0/a-17:0/a-15:0), and cardiolipin biosynthesis CL(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/18:1(11Z)/22:5(7Z,10Z,13Z,16Z,19Z)). Hydrogen ion is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis TG(20:3(8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)), de novo triacylglycerol biosynthesis TG(18:2(9Z,12Z)/20:0/20:4(5Z,8Z,11Z,14Z)), de novo triacylglycerol biosynthesis TG(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)), and de novo triacylglycerol biosynthesis TG(24:0/20:5(5Z,8Z,11Z,14Z,17Z)/24:0). A hydrogen ion is created when a hydrogen atom loses or gains an electron. A positively charged hydrogen ion (or proton) can readily combine with other particles and therefore is only seen isolated when it is in a gaseous state or a nearly particle-free space. Due to its extremely high charge density of approximately 2×1010 times that of a sodium ion, the bare hydrogen ion cannot exist freely in solution as it readily hydrates, i.e., bonds quickly. The hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions . Hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions. Under aqueous conditions found in biochemistry, hydrogen ions exist as the hydrated form hydronium, H3O+, but these are often still referred to as hydrogen ions or even protons by biochemists. [Wikipedia])

   

DG(18:3(6Z,9Z,12Z)/20:0/0:0)

(2S)-1-hydroxy-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propan-2-yl icosanoate

C41H74O5 (646.5535954)


DG(18:3(6Z,9Z,12Z)/20:0/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(6Z,9Z,12Z)/20:0/0:0), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of arachidic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the arachidic acid moiety is derived from peanut oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:3(6Z,9Z,12Z)/20:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:3(6Z,9Z,12Z)/20:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

PE(18:3(6Z,9Z,12Z)/20:0)

(2-aminoethoxy)[(2R)-2-(icosanoyloxy)-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphinic acid

C43H80NO8P (769.562125)


PE(18:3(6Z,9Z,12Z)/20:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:3(6Z,9Z,12Z)/20:0), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of arachidic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the arachidic acid moiety is derived from peanut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

Phosphatidylserine

(2S)-2-amino-3-({[(2R)-2-(butanoyloxy)-3-(propanoyloxy)propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C13H24NO10P (385.1137774)


Phosphatidylserine (PS) is a phospholipid nutrient found in fish, green leafy vegetables, soybeans and rice, and is essential for the normal functioning of neuronal cell membranes and activates Protein kinase C (PKC) which has been shown to be involved in memory function. In apoptosis, phosphatidylserine is transferred to the outer leaflet of the plasma membrane. This is part of the process by which the cell is targeted for phagocytosis. PS has been shown to slow cognitive decline in animal models. PS has been investigated in a small number of double-blind placebo trials and has been shown to increase memory performance in the elderly. Because of the potentail cognitive benefits of phosphatidylserine, the substance is sold as a dietary supplement to people who believe they can benefit from an increased intake. The dietary supplement was originally processed from bovine sources however Prion disease scares in the 1990s outlawed this process, and a soy-based alternative was adopted.

   

LysoPA(18:3(6Z,9Z,12Z)/0:0)

{2-hydroxy-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy}phosphonic acid

C21H37O7P (432.2276782)


LysoPA(18:3(6Z,9Z,12Z)/0:0) is a lysophosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. Lysophosphatidic acids can have different combinations of fatty acids of varying lengths and saturation attached at the C-1 (sn-1) or C-2 (sn-2) position. Fatty acids containing 16 and 18 carbons are the most common. LysoPA(18:3(6Z,9Z,12Z)/0:0), in particular, consists of one chain of gamma-linolenic acid at the C-1 position. Lysophosphatidic acid is the simplest possible glycerophospholipid. It is the biosynthetic precursor of phosphatidic acid. Although it is present at very low levels only in animal tissues, it is extremely important biologically, influencing many biochemical processes.

   

PA(18:3(6Z,9Z,12Z)/20:0)

[(2R)-2-(icosanoyloxy)-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphonic acid

C41H75O8P (726.519928)


PA(18:3(6Z,9Z,12Z)/20:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(6Z,9Z,12Z)/20:0), in particular, consists of one chain of gamma-linolenic acid at the C-1 position and one chain of arachidic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

Diphosphate

phosphonato phosphate

O7P2-4 (173.911931)


In chemistry, the anion, the salts, and the esters of pyrophosphoric acid are called pyrophosphates. The anion is abbreviated PPi and is formed by the hydrolysis of ATP into AMP in cells. This hydrolysis is called pyrophosphorolysis. The pyrophosphate anion has the structure P2O74-, and is an acid anhydride of phosphate. It is unstable in aqueous solution and rapidly hydrolyzes into inorganic phosphate. Pyrophosphate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=14000-31-8 (retrieved 2024-10-08) (CAS RN: 14000-31-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).