Reaction Process: PathBank:SMP0001592
phospholipid biosynthesis (CL(18:1(9Z)/15:0cyclo/19:0cycv8c/15:0cyclo)) related metabolites
find 7 related metabolites which is associated with chemical reaction(pathway) phospholipid biosynthesis (CL(18:1(9Z)/15:0cyclo/19:0cycv8c/15:0cyclo))
CDP-DG(19:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(19:iso/18:1(9Z))
Glycerol 3-phosphate
Glycerol 3-phosphate, also known as glycerophosphoric acid or alpha-glycerophosphorate, is a member of the class of compounds known as glycerophosphates. Glycerophosphates are compounds containing a glycerol linked to a phosphate group. Glycerol 3-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). Glycerol 3-phosphate can be found in a number of food items such as sacred lotus, common oregano, mixed nuts, and yautia, which makes glycerol 3-phosphate a potential biomarker for the consumption of these food products. Glycerol 3-phosphate can be found primarily in blood, feces, saliva, and urine, as well as in human prostate tissue. Glycerol 3-phosphate exists in all living species, ranging from bacteria to humans. In humans, glycerol 3-phosphate is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-12:0/i-21:0/a-21:0/i-21:0), cardiolipin biosynthesis cl(i-12:0/a-25:0/i-13:0/i-12:0), cardiolipin biosynthesis cl(i-13:0/i-21:0/i-21:0/a-25:0), and cardiolipin biosynthesis cl(i-13:0/a-25:0/i-18:0/a-13:0). Glycerol 3-phosphate is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis tg(i-24:0/19:0/16:0), de novo triacylglycerol biosynthesis TG(16:0/22:4(7Z,10Z,13Z,16Z)/16:1(9Z)), de novo triacylglycerol biosynthesis TG(18:0/18:3(9Z,12Z,15Z)/14:1(9Z)), and de novo triacylglycerol biosynthesis TG(18:3(6Z,9Z,12Z)/22:5(4Z,7Z,10Z,13Z,16Z)/20:2(11Z,14Z)). Glycerol 3-phosphate is a chemical intermediate in the glycolysis metabolic pathway. It is commonly confused with the similarly named glycerate 3-phosphate or glyceraldehyde 3-phosphate. Glycerol 3-phosphate is produced from glycerol, the triose sugar backbone of triglycerides and glycerophospholipids, by the enzyme glycerol kinase. Glycerol 3-phospate may then be converted by dehydrogenation to dihydroxyacetone phosphate (DHAP) by the enzyme glycerol-3-phosphate dehydrogenase. DHAP can then be rearranged into glyceraldehyde 3-phosphate (GA3P) by triose phosphate isomerase (TIM), and feed into glycolysis. The glycerol 3-phosphate shuttle is used to rapidly regenerate NAD+ in the brain and skeletal muscle cells of mammals (wikipedia). Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID G072
Cytidine monophosphate
Cytidine monophosphate, also known as 5-cytidylic acid and abbreviated CMP, is a nucleotide. It is an ester of phosphoric acid with the nucleoside cytidine. CMP consists of the phosphate group, the pentose sugar ribose, and the nucleobase cytosine. Cytidine monophosphate (CMP) is derived from cytidine triphosphate (CTP) with subsequent loss of two phosphates. The synthesis of the pyrimidines CTP and UTP occurs in the cytoplasm and starts with the formation of carbamoyl phosphate from glutamine and CO2. Next, aspartate undergoes a condensation reaction with carbamoyl-phosphate to form orotic acid. In a subsequent cyclization reaction, the enzyme Aspartate carbamoyltransferase forms N-carbamoyl-aspartate which is converted into dihydroorotic acid by Dihydroorotase. The latter is converted to orotate by Dihydroorotate oxidase. Orotate is covalently linked with a phosphorylated ribosyl unit with Orotate phosphoribosyltransferase (aka "PRPP transferase") catalyzing reaction, yielding orotidine monophosphate (OMP). Orotidine-5-phosphate is decarboxylated by Orotidine-5-phosphate decarboxylase to form uridine monophosphate (UMP). UMP is phosphorylated by two kinases to uridine triphosphate (UTP) via two sequential reactions with ATP. CTP is subsequently formed by amination of UTP by the catalytic activity of CTP synthetase. Cytosine monophosphate (CMP) and uridine monophosphate (UMP) have been prescribed for the treatment of neuromuscular affections in humans. Patients treated with CMP/UMP recover from altered neurological functions. Additionally, the administration of CMP/UMP appears to favour the entry of glucose in the muscle and CMP/UMP may be important in maintaining the level of hepatic glycogen constant during exercise. [PMID:18663991]. Cytidine monophosphate, also known as cmp or cytidylic acid, is a member of the class of compounds known as pyrimidine ribonucleoside monophosphates. Pyrimidine ribonucleoside monophosphates are pyrimidine ribobucleotides with monophosphate group linked to the ribose moiety. Cytidine monophosphate is soluble (in water) and a moderately acidic compound (based on its pKa). Cytidine monophosphate can be found in a number of food items such as elliotts blueberry, small-leaf linden, orange mint, and malabar spinach, which makes cytidine monophosphate a potential biomarker for the consumption of these food products. Cytidine monophosphate can be found primarily in saliva, as well as throughout all human tissues. Cytidine monophosphate exists in all living species, ranging from bacteria to humans. In humans, cytidine monophosphate is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-13:0/i-18:0/i-17:0/18:2(9z,11z)), cardiolipin biosynthesis cl(i-13:0/i-24:0/a-21:0/i-15:0), cardiolipin biosynthesis cl(i-13:0/i-22:0/i-20:0/i-15:0), and cardiolipin biosynthesis cl(i-12:0/a-17:0/i-20:0/a-21:0). Cytidine monophosphate is also involved in several metabolic disorders, some of which include beta ureidopropionase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), UMP synthase deficiency (orotic aciduria), and dihydropyrimidinase deficiency. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Cytidine 5'-monophosphate (5'-Cytidylic acid) is a nucleotide which is used as a monomer in RNA. Cytidine 5'-monophosphate consists of the nucleobase cytosine, the pentose sugar ribose, and the phosphate group[1]. Cytidine 5'-monophosphate (5'-Cytidylic acid) is a nucleotide which is used as a monomer in RNA. Cytidine 5'-monophosphate consists of the nucleobase cytosine, the pentose sugar ribose, and the phosphate group[1].
Dihydroxyacetone phosphate
An important intermediate in lipid biosynthesis and in glycolysis.; Dihydroxyacetone phosphate (DHAP) is a biochemical compound involved in many reactions, from the Calvin cycle in plants to the ether-lipid biosynthesis process in Leishmania mexicana. Its major biochemical role is in the glycolysis metabolic pathway. DHAP may be referred to as glycerone phosphate in older texts.; Dihydroxyacetone phosphate lies in the glycolysis metabolic pathway, and is one of the two products of breakdown of fructose 1,6-phosphate, along with glyceraldehyde 3-phosphate. It is rapidly and reversibly isomerised to glyceraldehyde 3-phosphate.; In the Calvin cycle, DHAP is one of the products of the sixfold reduction of 1,3-bisphosphoglycerate by NADPH. It is also used in the synthesis of sedoheptulose 1,7-bisphosphate and fructose 1,6-bisphosphate which are both used to reform ribulose 5-phosphate, the key carbohydrate of the Calvin cycle. Dihydroxyacetone phosphate is found in many foods, some of which are sesame, mexican groundcherry, parsley, and common wheat. [Spectral] Glycerone phosphate (exact mass = 169.99802) and beta-D-Fructose 1,6-bisphosphate (exact mass = 339.99605) and NADP+ (exact mass = 743.07545) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Dihydroxyacetone phosphate is an important intermediate in lipid biosynthesis and in glycolysis. Dihydroxyacetone phosphate is found to be associated with transaldolase deficiency, which is an inborn error of metabolism. Dihydroxyacetone phosphate has been identified in the human placenta (PMID: 32033212). KEIO_ID D014
NADP+
[Spectral] NADP+ (exact mass = 743.07545) and NAD+ (exact mass = 663.10912) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Hydrogen Ion
Hydrogen ion, also known as proton or h+, is a member of the class of compounds known as other non-metal hydrides. Other non-metal hydrides are inorganic compounds in which the heaviest atom bonded to a hydrogen atom is belongs to the class of other non-metals. Hydrogen ion can be found in a number of food items such as lowbush blueberry, groundcherry, parsley, and tarragon, which makes hydrogen ion a potential biomarker for the consumption of these food products. Hydrogen ion exists in all living organisms, ranging from bacteria to humans. In humans, hydrogen ion is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-13:0/a-25:0/a-21:0/i-15:0), cardiolipin biosynthesis cl(a-13:0/a-17:0/i-13:0/a-25:0), cardiolipin biosynthesis cl(i-12:0/i-13:0/a-17:0/a-15:0), and cardiolipin biosynthesis CL(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/18:1(11Z)/22:5(7Z,10Z,13Z,16Z,19Z)). Hydrogen ion is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis TG(20:3(8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)), de novo triacylglycerol biosynthesis TG(18:2(9Z,12Z)/20:0/20:4(5Z,8Z,11Z,14Z)), de novo triacylglycerol biosynthesis TG(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)), and de novo triacylglycerol biosynthesis TG(24:0/20:5(5Z,8Z,11Z,14Z,17Z)/24:0). A hydrogen ion is created when a hydrogen atom loses or gains an electron. A positively charged hydrogen ion (or proton) can readily combine with other particles and therefore is only seen isolated when it is in a gaseous state or a nearly particle-free space. Due to its extremely high charge density of approximately 2×1010 times that of a sodium ion, the bare hydrogen ion cannot exist freely in solution as it readily hydrates, i.e., bonds quickly. The hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions . Hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions. Under aqueous conditions found in biochemistry, hydrogen ions exist as the hydrated form hydronium, H3O+, but these are often still referred to as hydrogen ions or even protons by biochemists. [Wikipedia])
PGP(18:1(9Z)/18:1(9Z))
PGP(18:1(9Z)/18:1(9Z)) is a phosphatidylglycerolphosphate or glycerophospholipid (PGP or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(18:1(9Z)/18:1(9Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of oleic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of Phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PGPs have a net charge of -1 at physiological pH and are found in high concentration in mitochondrial membranes and as components of pulmonary surfactant. PGP also serves as a precursor for the synthesis of cardiolipin. PGP is synthesized from CDP-diacylglycerol and glycerol-3-phosphate. PGP(18:1(9Z)/18:1(9Z)) belongs to the class of glycerophosphoglycerophosphates, also called phosphatidylglycerophosphates (PGPs). These lipids contain a common glycerophosphate skeleton linked to at least one fatty acyl chain and a glycero-3-phosphate moiety. As is the case with diacylglycerols, phosphatidylglycerophosphates can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PGP(18:1(9Z)/18:1(9Z)), in particular, consists of two 9Z-octadecenoyl chains at positions C-1 and C-2. In E. coli, PGPs can be found in the cytoplasmic membrane. The are synthesized by the addition of glycerol 3-phosphate to a CDP-diacylglycerol. In turn, PGPs are dephosphorylated to Phosphatidylglycerols (PGs) by the enzyme Phosphatidylglycerophosphatase.
ent-NADPH
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS