Reaction Process: BioCyc:META_PWY-5207

coenzyme B/coenzyme M regeneration I (methanophenazine-dependent) related metabolites

find 7 related metabolites which is associated with chemical reaction(pathway) coenzyme B/coenzyme M regeneration I (methanophenazine-dependent)

H2 + an oxidized coenzyme F420 ⟶ a reduced coenzyme F420

Hydrogen

Molecular hydrogen

H2 (2.0156492)


Hydrogen is a colorless, odorless, nonmetallic, tasteless, highly flammable diatomic gas with the molecular formula H2. With an atomic weight of 1.00794, hydrogen is the lightest element. Besides the common H1 isotope, hydrogen exists as the stable isotope Deuterium and the unstable, radioactive isotope Tritium. Hydrogen is the most abundant of the chemical elements, constituting roughly 75\\% of the universes elemental mass. Hydrogen can form compounds with most elements and is present in water and most organic compounds. It plays a particularly important role in acid-base chemistry, in which many reactions involve the exchange of protons between soluble molecules. Oxidation of hydrogen, in the sense of removing its electron, formally gives H+, containing no electrons and a nucleus which is usually composed of one proton. That is why H+ is often called a proton. This species is central to discussion of acids. Under the Bronsted-Lowry theory, acids are proton donors, while bases are proton acceptors. A bare proton H+ cannot exist in solution because of its strong tendency to attach itself to atoms or molecules with electrons. However, the term proton is used loosely to refer to positively charged or cationic hydrogen, denoted H+. H2 is a product of some types of anaerobic metabolism and is produced by several microorganisms, usually via reactions catalyzed by iron- or nickel-containing enzymes called hydrogenases. These enzymes catalyze the reversible redox reaction between H2 and its component two protons and two electrons. Creation of hydrogen gas occurs in the transfer of reducing equivalents produced during pyruvate fermentation to water. Hydrogen has been found to be a metabolite of Citrobacter, Cyanobacteria, Enterobacter, Halobacterium and Rhodobacteraceae (PMID: 28042989; PMID: 16371161) (https://www.insa.nic.in/writereaddata/UpLoadedFiles/PINSA/Vol51B_1985_2_Art16.pdf) (https://www.researchgate.net/publication/222428793_High_Hydrogen_Yield_from_a_Two-step_Process_of_Dark-_and_Photo-fermentation_of_Sucrose) (Tao, Y; Chen, Y; Wu, Y; He, Y; Zhou, Z (2007). "High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose". International Journal of Hydrogen Energy. 32 (2): 200-206). It is used as a packaging gas [DFC]

   
   

Methanophenazine

Methanophenazine; 2-(2,3-Dihydro-all-trans-pentaprenyloxy)phenazine; 2-(2,3-Dihydropentaprenyloxy)phenazine

C37H50N2O (538.392293)


   

Dihydromethanophenazine

Dihydromethanophenazine; 2-(Dihydropentaprenyloxy)-dihydrophenazine

C37H52N2O (540.4079422)


   

2-Sulfanylethanesulfonate

2-Sulfanylethanesulfonate

C2H5O3S2- (140.96801200000002)


D020011 - Protective Agents