NCBI Taxonomy: 97149
Caulocystis (ncbi_taxid: 97149)
found 79 associated metabolites at genus taxonomy rank level.
Ancestor: Sargassaceae
Child Taxonomies: Caulocystis uvifera, Caulocystis cephalornithos
2-Hydroxy-6-tridecylbenzoic acid
2-Hydroxy-6-tridecylbenzoic acid is a hydroxybenzoic acid. It is functionally related to a salicylic acid. 2-Hydroxy-6-tridecylbenzoic acid is a natural product found in Ginkgo biloba and Caulocystis cephalornithos with data available. 2-Hydroxy-6-tridecylbenzoic acid is found in fats and oils. 2-Hydroxy-6-tridecylbenzoic acid is isolated from pistachio shells. 2-Hydroxy-6-tridecylbenzoic acid is isolated from Ginkgo biloba (ginkgo). Isolated from pistachio shells. Isolated from Ginkgo biloba (ginkgo). 2-Hydroxy-6-tridecylbenzoic acid is found in fats and oils and nuts. D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates Ginkgolic Acid (C13:0) is a natural anticariogenic agent in that it exhibits antimicrobial activity against S. mutans and suppresses the specific virulence factors associated with its cariogenicity. IC50 value: Inhibiting the biofilm formation of S. mutans (MBIC (50) = 4 μg/mL); reduced 1-day-developed biofilm of S. mutans by 50 \\% or more at low concentration (MBRC (50) = 32 μg/mL). Target: In vitro: Ginkgolic Acid (C13:0) inhibited not only the growth of S. mutans planktonic cells at minimum inhibitory concentration (MIC) of 4 μg/mL and minimum bactericidal concentration (MBC) of 8 μg/mL but also the acid production and adherence to saliva-coated hydroxyapatite of S. mutans at sub-MIC concentration. In addition, this agent was effective in inhibiting the biofilm formation of S. mutans (MBIC (50) = 4 μg/mL), and it reduced 1-day-developed biofilm of S. mutans by 50 \\% or more at low concentration (MBRC (50) = 32 μg/mL). Furthermore Ginkgolic Acid (C13:0) disrupted biofilm integrity effectively [1]. In vivo: Ginkgolic Acid (C13:0) is a natural anticariogenic agent in that it exhibits antimicrobial activity against S. mutans and suppresses the specific virulence factors associated with its cariogenicity. IC50 value: Inhibiting the biofilm formation of S. mutans (MBIC (50) = 4 μg/mL); reduced 1-day-developed biofilm of S. mutans by 50 \% or more at low concentration (MBRC (50) = 32 μg/mL). Target: In vitro: Ginkgolic Acid (C13:0) inhibited not only the growth of S. mutans planktonic cells at minimum inhibitory concentration (MIC) of 4 μg/mL and minimum bactericidal concentration (MBC) of 8 μg/mL but also the acid production and adherence to saliva-coated hydroxyapatite of S. mutans at sub-MIC concentration. In addition, this agent was effective in inhibiting the biofilm formation of S. mutans (MBIC (50) = 4 μg/mL), and it reduced 1-day-developed biofilm of S. mutans by 50 \% or more at low concentration (MBRC (50) = 32 μg/mL). Furthermore Ginkgolic Acid (C13:0) disrupted biofilm integrity effectively [1]. In vivo:
2-Pentadecanone
2-Pentadecanone is found in cereals and cereal products. 2-Pentadecanone is isolated from hop (Humulus lupulus), coconut (Cocos nucifera) and other oils. Also found in American cranberry, feijoa fruit, quince, asparagus, ginger, wheat bread, soybean, cooked rice and cheeses. 2-Pentadecanone is a flavouring ingredien Isolated from hop (Humulus lupulus), coconut (Cocos nucifera) and other oilsand is also found in American cranberry, feijoa fruit, quince, asparagus, ginger, wheat bread, soybean, cooked rice and cheeses. Flavouring ingredient.
2-Heptadecanone
2-Heptadecanone is a constituent of aroma compounds of white bread
1-Pentadecene
1-Pentadecene, also known as pentadec-1-ene, belongs to the class of organic compounds known as unsaturated aliphatic hydrocarbons. These are aliphatic Hydrocarbons that contains one or more unsaturated carbon atoms. 1-Pentadecene is an unbranched fifteen-carbon alkene with one double bond between C-1 and C-2. These compounds contain one or more double or triple bonds. Thus, 1-pentadecene is considered to be a hydrocarbon lipid molecule. 1-Pentadecene is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. 1-Pentadecene is found, on average, in the highest concentration within safflowers. 1-Pentadecene has also been detected, but not quantified, in burdocks and watermelons. This could make 1-pentadecene a potential biomarker for the consumption of these foods. Occurs in beef and oakmoss oleoresin. 1-Pentadecene is found in many foods, some of which are animal foods, burdock, safflower, and watermelon.
6-Tridecylsalicylic acid
D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates Ginkgolic Acid (C13:0) is a natural anticariogenic agent in that it exhibits antimicrobial activity against S. mutans and suppresses the specific virulence factors associated with its cariogenicity. IC50 value: Inhibiting the biofilm formation of S. mutans (MBIC (50) = 4 μg/mL); reduced 1-day-developed biofilm of S. mutans by 50 \\% or more at low concentration (MBRC (50) = 32 μg/mL). Target: In vitro: Ginkgolic Acid (C13:0) inhibited not only the growth of S. mutans planktonic cells at minimum inhibitory concentration (MIC) of 4 μg/mL and minimum bactericidal concentration (MBC) of 8 μg/mL but also the acid production and adherence to saliva-coated hydroxyapatite of S. mutans at sub-MIC concentration. In addition, this agent was effective in inhibiting the biofilm formation of S. mutans (MBIC (50) = 4 μg/mL), and it reduced 1-day-developed biofilm of S. mutans by 50 \\% or more at low concentration (MBRC (50) = 32 μg/mL). Furthermore Ginkgolic Acid (C13:0) disrupted biofilm integrity effectively [1]. In vivo: Ginkgolic Acid (C13:0) is a natural anticariogenic agent in that it exhibits antimicrobial activity against S. mutans and suppresses the specific virulence factors associated with its cariogenicity. IC50 value: Inhibiting the biofilm formation of S. mutans (MBIC (50) = 4 μg/mL); reduced 1-day-developed biofilm of S. mutans by 50 \% or more at low concentration (MBRC (50) = 32 μg/mL). Target: In vitro: Ginkgolic Acid (C13:0) inhibited not only the growth of S. mutans planktonic cells at minimum inhibitory concentration (MIC) of 4 μg/mL and minimum bactericidal concentration (MBC) of 8 μg/mL but also the acid production and adherence to saliva-coated hydroxyapatite of S. mutans at sub-MIC concentration. In addition, this agent was effective in inhibiting the biofilm formation of S. mutans (MBIC (50) = 4 μg/mL), and it reduced 1-day-developed biofilm of S. mutans by 50 \% or more at low concentration (MBRC (50) = 32 μg/mL). Furthermore Ginkgolic Acid (C13:0) disrupted biofilm integrity effectively [1]. In vivo:
1-PENTADECENE
An unbranched fifteen-carbon alkene with one double bond between C-1 and C-2.
20261-38-5
D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates Ginkgolic Acid (C13:0) is a natural anticariogenic agent in that it exhibits antimicrobial activity against S. mutans and suppresses the specific virulence factors associated with its cariogenicity. IC50 value: Inhibiting the biofilm formation of S. mutans (MBIC (50) = 4 μg/mL); reduced 1-day-developed biofilm of S. mutans by 50 \\% or more at low concentration (MBRC (50) = 32 μg/mL). Target: In vitro: Ginkgolic Acid (C13:0) inhibited not only the growth of S. mutans planktonic cells at minimum inhibitory concentration (MIC) of 4 μg/mL and minimum bactericidal concentration (MBC) of 8 μg/mL but also the acid production and adherence to saliva-coated hydroxyapatite of S. mutans at sub-MIC concentration. In addition, this agent was effective in inhibiting the biofilm formation of S. mutans (MBIC (50) = 4 μg/mL), and it reduced 1-day-developed biofilm of S. mutans by 50 \\% or more at low concentration (MBRC (50) = 32 μg/mL). Furthermore Ginkgolic Acid (C13:0) disrupted biofilm integrity effectively [1]. In vivo: Ginkgolic Acid (C13:0) is a natural anticariogenic agent in that it exhibits antimicrobial activity against S. mutans and suppresses the specific virulence factors associated with its cariogenicity. IC50 value: Inhibiting the biofilm formation of S. mutans (MBIC (50) = 4 μg/mL); reduced 1-day-developed biofilm of S. mutans by 50 \% or more at low concentration (MBRC (50) = 32 μg/mL). Target: In vitro: Ginkgolic Acid (C13:0) inhibited not only the growth of S. mutans planktonic cells at minimum inhibitory concentration (MIC) of 4 μg/mL and minimum bactericidal concentration (MBC) of 8 μg/mL but also the acid production and adherence to saliva-coated hydroxyapatite of S. mutans at sub-MIC concentration. In addition, this agent was effective in inhibiting the biofilm formation of S. mutans (MBIC (50) = 4 μg/mL), and it reduced 1-day-developed biofilm of S. mutans by 50 \% or more at low concentration (MBRC (50) = 32 μg/mL). Furthermore Ginkgolic Acid (C13:0) disrupted biofilm integrity effectively [1]. In vivo: