NCBI Taxonomy: 94630
Semibalanus balanoides (ncbi_taxid: 94630)
found 22 associated metabolites at species taxonomy rank level.
Ancestor: Semibalanus
Child Taxonomies: none taxonomy data.
3-HODE + 9-HODE
13-Hydroxyoctadecadienoic acid (13-HODE) (CAS: 18104-45-5), also known as 13(S)-hydroxy-9Z,11E-octadecadienoic acid or 13(S)-HODE, is the major lipoxygenation product synthesized in the body from linoleic acid. 13-HODE prevents cell adhesion to endothelial cells and can inhibit cancer metastasis. 13-HODE synthesis is enhanced by cyclic AMP. gamma-Linolenic acid, a desaturated metabolite of linoleic acid, causes substantial stimulation of 13-HODE synthesis. A fall in gamma-linolenic acid synthesis with age may be related to the age-related fall in 13-HODE formation (PMID: 9561154). 13-HODE is considered an intermediate in linoleic acid metabolism. It is generated from 13(S)-HPODE via the enzyme lipoxygenase (EC 1.13.11.12). 13-HODE has been shown to be involved in cell proliferation and differentiation in a number of systems. 13-HODE is found to be produced by prostate tumours and cell lines and researchers believe that there is a link between linoleic acid metabolism and the development or progression of prostate cancer (PMID: 9367845).
12-HEPE
12-HEPE is hydroxy derivative of 12-lipoxygenase metabolites of Eicosapentaenoic acid (EPA). 12S-HEPE participates in platelet-neutrophil interactions in a manner similar to 12S-HETE. It can also compete with endogenous arachidonic acid for 5-lipoxygenation in stimulated human neutrophils. By providing competing substrates for neutrophil 5-lipoxygenase, platelets might contribute to the antiinflammatory potential of dietary n-3 fatty acids through platelet-neutrophil interaction. ( PMID: 2116491) [HMDB] 12-HEPE is hydroxy derivative of 12-lipoxygenase metabolites of Eicosapentaenoic acid (EPA). 12S-HEPE participates in platelet-neutrophil interactions in a manner similar to 12S-HETE. It can also compete with endogenous arachidonic acid for 5-lipoxygenation in stimulated human neutrophils. By providing competing substrates for neutrophil 5-lipoxygenase, platelets might contribute to the antiinflammatory potential of dietary n-3 fatty acids through platelet-neutrophil interaction. ( PMID: 2116491).
17(R)-HDHA
Docosahexaenoic acid (DHA) is a omega-3 essential fatty acid that reduces the incidence and severity of a number of diseases. Recently, a novel series of DHA-derived lipid mediators with potent protective actions has been identified. In this study we demonstrate that dietary amplification of these DHA-derived products protects the liver from necroinflammatory injury. In vitro, supplementation of hepatocytes with DHA significantly reduced hydrogen peroxide-induced DNA damage, evaluated by the "comet assay," and oxidative stress, determined by measurement of malondialdehyde levels. In vivo, dietary supplementation of mice with DHA ameliorated carbon tetrachloride-induced necroinflammatory damage. In addition, hepatic cyclooxygenase-2 expression and PGE2 levels were significantly reduced in mice fed DHA-enriched diets. In these animals, increased hepatic formation of DHA-derived lipid mediators (i.e., 17S-hydroxy-DHA (17S-HDHA) and protectin D1) was detected by HPLC-gas chromatography/mass spectrometry analysis. Consistent with these findings, synthetic 17-HDHA abrogated genotoxic and oxidative damage in hepatocytes and decreased TNF-alpha release and 5-lipoxygenase expression in macrophages. In a transactivation assay, 17-HDHA acted in a concentration-dependent manner as a PPARgamma agonist. Taken together, these findings identify a potential role for DHA-derived products, specifically 17S-HDHA and protectin D1, in mediating the protective effects of dietary DHA in necroinflammatory liver injury. (PMID: 17056761). This fatty acyl belongs to the main class of docosanoids. (Lipid Maps). Docosahexaenoic acid (DHA) is a omega-3 essential fatty acid that reduces the incidence and severity of a number of diseases. Recently, a novel series of DHA-derived lipid mediators with potent protective actions has been identified. In this study we demonstrate that dietary amplification of these DHA-derived products protects the liver from necroinflammatory injury. In vitro, supplementation of hepatocytes with DHA significantly reduced hydrogen peroxide-induced DNA damage, evaluated by the "comet assay," and oxidative stress, determined by measurement of malondialdehyde levels. In vivo, dietary supplementation of mice with DHA ameliorated carbon tetrachloride-induced necroinflammatory damage. In addition, hepatic cyclooxygenase-2 expression and PGE2 levels were significantly reduced in mice fed DHA-enriched diets. In these animals, increased hepatic formation of DHA-derived lipid mediators (i.e., 17S-hydroxy-DHA (17S-HDHA) and protectin D1) was detected by HPLC-gas chromatography/mass spectrometry analysis. Consistent with these findings, synthetic 17-HDHA abrogated genotoxic and oxidative damage in hepatocytes and decreased TNF-alpha release and 5-lipoxygenase expression in macrophages. In a transactivation assay, 17-HDHA acted in a concentration-dependent manner as a PPARgamma agonist. Taken together, these findings identify a potential role for DHA-derived products, specifically 17S-HDHA and protectin D1, in mediating the protective effects of dietary DHA in necroinflammatory liver injury. (PMID: 17056761)
13-HODE
A HODE that consists of 9Z,11E-octadecadienoic acid carrying a 13-hydroxy substituent.
13(S)-HODE
An HODE (hydroxyoctadecadienoic acid) in which the double bonds are at positions 9 and 11 (E and Z geometry, respectively) and the hydroxy group is at position 13 (with S-configuration).