NCBI Taxonomy: 507482
Physospermopsis clade (ncbi_taxid: 507482)
found 138 associated metabolites at clade taxonomy rank level.
Ancestor: Apioideae
Child Taxonomies: Hansenia, Tongoloa, Keraymonia, Heptaptera, Hymenolaena, Haplosphaera, Sinolimprichtia, Physospermopsis
Isoimperatorin
Isoimperatorin is a member of the class of compounds known as psoralens. Psoralens are organic compounds containing a psoralen moiety, which consists of a furan fused to a chromenone to for 7H-furo[3,2-g]chromen-7-one. Isoimperatorin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Isoimperatorin can be found in a number of food items such as parsley, lime, wild celery, and parsnip, which makes isoimperatorin a potential biomarker for the consumption of these food products. Isoimperatorin is a non-carcinogenic (not listed by IARC) potentially toxic compound. If the compound has been ingested, rapid gastric lavage should be performed using 5\\\\% sodium bicarbonate. For skin contact, the skin should be washed with soap and water. If the compound has entered the eyes, they should be washed with large quantities of isotonic saline or water. In serious cases, atropine and/or pralidoxime should be administered. Anti-cholinergic drugs work to counteract the effects of excess acetylcholine and reactivate AChE. Atropine can be used as an antidote in conjunction with pralidoxime or other pyridinium oximes (such as trimedoxime or obidoxime), though the use of -oximes has been found to be of no benefit, or possibly harmful, in at least two meta-analyses. Atropine is a muscarinic antagonist, and thus blocks the action of acetylcholine peripherally (T3DB). D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM. Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM.
Marmesin
Marmesin is a member of psoralens and a tertiary alcohol. 2-(2-Hydroxypropan-2-yl)-2,3-dihydrofuro[3,2-g]chromen-7-one is a natural product found in Zanthoxylum beecheyanum, Zanthoxylum arnottianum, and other organisms with data available. Nodakenetin is found in wild celery. Nodakenetin is a constituent of Angelica species Constituent of Angelica subspecies Nodakenetin is found in wild celery. (+)-marmesin is a marmesin. It is an enantiomer of a nodakenetin. Marmesin is a natural product found in Coronilla scorpioides, Clausena dunniana, and other organisms with data available. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. (+)-Marmesin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=13849-08-6 (retrieved 2024-09-04) (CAS RN: 13849-08-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Sucrose
Sucrose is a nonreducing disaccharide composed of glucose and fructose linked via their anomeric carbons. It is obtained commercially from sugarcane (Saccharum officinarum), sugar beet (Beta vulgaris), and other plants and used extensively as a food and a sweetener. Sucrose is derived by crushing and extracting sugarcane with water or by extracting sugar beet with water, evaporating, and purifying with lime, carbon, and various liquids. Sucrose is also obtainable from sorghum. Sucrose occurs in low percentages in honey and maple syrup. Sucrose is used as a sweetener in foods and soft drinks, in the manufacture of syrups, in invert sugar, confectionery, preserves and jams, demulcent, pharmaceutical products, and caramel. Sucrose is also a chemical intermediate for detergents, emulsifying agents, and other sucrose derivatives. Sucrose is widespread in the seeds, leaves, fruits, flowers, and roots of plants, where it functions as an energy store for metabolism and as a carbon source for biosynthesis. The annual world production of sucrose is in excess of 90 million tons mainly from the juice of sugar cane (20\\\%) and sugar beet (17\\\%). In addition to its use as a sweetener, sucrose is used in food products as a preservative, antioxidant, moisture control agent, stabilizer, and thickening agent. BioTransformer predicts that sucrose is a product of 6-O-sinapoyl sucrose metabolism via a hydrolysis-of-carboxylic-acid-ester-pattern1 reaction occurring in human gut microbiota and catalyzed by the liver carboxylesterase 1 (P23141) enzyme (PMID: 30612223). Sucrose appears as white odorless crystalline or powdery solid. Denser than water. Sucrose is a glycosyl glycoside formed by glucose and fructose units joined by an acetal oxygen bridge from hemiacetal of glucose to the hemiketal of the fructose. It has a role as an osmolyte, a sweetening agent, a human metabolite, an algal metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. A nonreducing disaccharide composed of glucose and fructose linked via their anomeric carbons. It is obtained commercially from sugarcane, sugar beet (beta vulgaris), and other plants and used extensively as a food and a sweetener. Sucrose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Sucrose is a natural product found in Haplophyllum ramosissimum, Cyperus esculentus, and other organisms with data available. Sucrose is a metabolite found in or produced by Saccharomyces cerevisiae. A nonreducing disaccharide composed of GLUCOSE and FRUCTOSE linked via their anomeric carbons. It is obtained commercially from SUGARCANE, sugar beet (BETA VULGARIS), and other plants and used extensively as a food and a sweetener. See also: Anise; ferrous disulfide; sucrose (component of); Phosphoric acid; sucrose (component of); Sucrose caramel (related) ... View More ... In chemistry, sugar loosely refers to a number of carbohydrates, such as monosaccharides, disaccharides, or oligosaccharides. In food, sugar refers to a class of edible crystalline carbohydrates, mainly sucrose, lactose, and fructose characterized by a sweet flavor. Other sugars are used in industrial food preparation, but are usually known by more specific names - glucose, fructose or fruit sugar, high fructose corn syrup, etc. Sugars is found in many foods, some of which are ucuhuba, butternut squash, common walnut, and miso. A glycosyl glycoside formed by glucose and fructose units joined by an acetal oxygen bridge from hemiacetal of glucose to the hemiketal of the fructose. Sucrose, a disaccharide, is a sugar composed of glucose and fructose subunits. It is produced naturally in plants and is the main constituent of white sugar. It has the molecular formula C 12H 22O 11. For human consumption, sucrose is extracted and refined from either sugarcane or sugar beet. Sugar mills – typically located in tropical regions near where sugarcane is grown – crush the cane and produce raw sugar which is shipped to other factories for refining into pure sucrose. Sugar beet factories are located in temperate climates where the beet is grown, and process the beets directly into refined sugar. The sugar-refining process involves washing the raw sugar crystals before dissolving them into a sugar syrup which is filtered and then passed over carbon to remove any residual colour. The sugar syrup is then concentrated by boiling under a vacuum and crystallized as the final purification process to produce crystals of pure sucrose that are clear, odorless, and sweet. Sugar is often an added ingredient in food production and recipes. About 185 million tonnes of sugar were produced worldwide in 2017.[6] Sucrose is particularly dangerous as a risk factor for tooth decay because Streptococcus mutans bacteria convert it into a sticky, extracellular, dextran-based polysaccharide that allows them to cohere, forming plaque. Sucrose is the only sugar that bacteria can use to form this sticky polysaccharide.[7] Sucrose. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=8030-20-4 (retrieved 2024-06-29) (CAS RN: 57-50-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Imperatorin
Imperatorin is a member of the class of psoralens that is psoralen substituted by a prenyloxy group at position 8. Isolated from Angelica dahurica and Angelica koreana, it acts as a acetylcholinesterase inhibitor. It has a role as an EC 3.1.1.7 (acetylcholinesterase) inhibitor and a metabolite. Imperatorin is a natural product found in Allium wallichii, Ammi visnaga, and other organisms with data available. Imperatorin is found in anise. Imperatorin is present in Aegle marmelos (bael fruit) and seeds of Pastinaca sativa (parsnip).Imperatorin is a furocoumarin and a phytochemical that has been isolated from Urena lobata L. (Malvaceae). It is biosynthesized from umbelliferone, a coumarin derivative.Imperatorin has been shown to exhibit anti-hypertrophic and anti-convulsant functions (A7784, A7785).Imperatorin belongs to the family of Furanocoumarins. These are polycyclic aromatic compounds containing a furan ring fused to a coumarin moeity. See also: Angelica Dahurica Root (part of); Aegle marmelos fruit (part of); Ammi majus seed (part of) ... View More ... Imperatorin is found in anise. Imperatorin is present in Aegle marmelos (bael fruit) and seeds of Pastinaca sativa (parsnip).Imperatorin is a furocoumarin and a phytochemical that has been isolated from Urena lobata L. (Malvaceae). It is biosynthesized from umbelliferone, a coumarin derivative A member of the class of psoralens that is psoralen substituted by a prenyloxy group at position 8. Isolated from Angelica dahurica and Angelica koreana, it acts as a acetylcholinesterase inhibitor. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Present in Aegle marmelos (bael fruit) and seeds of Pastinaca sativa (parsnip) INTERNAL_ID 2244; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2244 Imperatorin is an effective of NO synthesis inhibitor (IC50=9.2 μmol), which also is a BChE inhibitor (IC50=31.4 μmol). Imperatorin is a weak agonist of TRPV1 with EC50 of 12.6±3.2 μM. Imperatorin is an effective of NO synthesis inhibitor (IC50=9.2 μmol), which also is a BChE inhibitor (IC50=31.4 μmol). Imperatorin is a weak agonist of TRPV1 with EC50 of 12.6±3.2 μM.
Notopterol
Notopterol is a furanocoumarin. Notopterol is a natural product found in Hansenia forbesii and Hansenia weberbaueriana with data available. Notopterol is a coumarin extracted from N. incisum. Notopterol induces apoptosis and has antipyretic, analgesic and anti-inflammatory effects. Notopterol is used for acute myeloid leukemia (AML)[1]. Notopterol is a coumarin extracted from N. incisum. Notopterol induces apoptosis and has antipyretic, analgesic and anti-inflammatory effects. Notopterol is used for acute myeloid leukemia (AML)[1].
L-Leucine
Leucine (Leu) or L-leucine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-leucine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Leucine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aliphatic amino acid. Leucine is essential in humans, meaning the body cannot synthesize it, and it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. L-Leucine is a branched chain amino acid (BCAA). The BCAAs consist of leucine, valine and isoleucine (and occasionally threonine). BCAAs are essential amino acids whose carbon structure is marked by a branch point at the beta-carbon position. BCAAs are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAAs have different metabolic routes, with valine going solely to carbohydrates (glucogenic), leucine solely to fats (ketogenic) and isoleucine being both a glucogenic and a ketogenic amino acid. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. The primary metabolic end products of leucine metabolism are acetyl-CoA and acetoacetate; consequently, it is one of the two exclusively ketogenic amino acids, with lysine being the other. Leucine is the most important ketogenic amino acid in humans. The vast majority of l-leucine metabolism is initially catalyzed by the branched-chain amino acid aminotransferase enzyme, producing alpha-ketoisocaproate (alpha-KIC). alpha-KIC is metabolized by the mitochondrial enzyme branched-chain alpha-ketoacid dehydrogenase, which converts it to isovaleryl-CoA. Isovaleryl-CoA is subsequently metabolized by the enzyme isovaleryl-CoA dehydrogenase and converted to beta-methylcrotonyl-CoA (MC-CoA), which is used in the synthesis of acetyl-CoA and other compounds. During biotin deficiency, HMB can be synthesized from MC-CoA via enoyl-CoA hydratase and an unknown thioesterase enzyme, which convert MC-CoA into HMB-CoA and HMB-CoA into HMB respectively. Leucine has the capacity to directly stimulate myofibrillar muscle protein synthesis (PMID 15051860). This effect of leucine arises results from its role as an activator of the mechanistic target of rapamycin (mTOR) (PMID 23551944) a serine-threonine protein kinase that regulates protein biosynthesis and cell growth. The activation of mTOR by leucine is mediated through Rag GTPases. Leucine, like other BCAAs, is associated with insulin resistance. In particular, higher levels of leucine are observed in the blood of diabetic mice, rats, and humans (PMID 25287287). BCAAs such as leucine have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Persistently low leucine levels can result in decreased appetite, poor feeding, lethargy, poor growth, weight loss, skin rashes, hair loss, and desquamation. Many types of inborn errors of BCAA metabolism exist and these are marked by various abnormalities. The most common form is maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary res... L-leucine is the L-enantiomer of leucine. It has a role as a plant metabolite, an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite, a human metabolite, an algal metabolite and a mouse metabolite. It is a pyruvate family amino acid, a proteinogenic amino acid, a leucine and a L-alpha-amino acid. It is a conjugate base of a L-leucinium. It is a conjugate acid of a L-leucinate. It is an enantiomer of a D-leucine. It is a tautomer of a L-leucine zwitterion. An essential branched-chain amino acid important for hemoglobin formation. L-Leucine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Leucine is one of nine essential amino acids in humans (provided by food), Leucine is important for protein synthesis and many metabolic functions. Leucine contributes to regulation of blood-sugar levels; growth and repair of muscle and bone tissue; growth hormone production; and wound healing. Leucine also prevents breakdown of muscle proteins after trauma or severe stress and may be beneficial for individuals with phenylketonuria. Leucine is available in many foods and deficiency is rare. (NCI04) Leucine (abbreviated as Leu or L)[2] is a branched-chain л±-amino acid with the chemical formulaHO2CCH(NH2)CH2CH(CH3)2. Leucine is classified as a hydrophobic amino acid due to its aliphatic isobutyl side chain. It is encoded by six codons (UUA, UUG, CUU, CUC, CUA, and CUG) and is a major component of the subunits in ferritin, astacin, and other buffer proteins. Leucine is an essential amino acid, meaning that the human body cannot synthesize it, and it therefore must be ingested. It is important for hemoglobin formation. An essential branched-chain amino acid important for hemoglobin formation. See also: Isoleucine; Leucine (component of) ... View More ... Dietary supplement, nutrient [DFC]. (±)-Leucine is found in many foods, some of which are green bell pepper, italian sweet red pepper, green zucchini, and red bell pepper. L-Leucine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=61-90-5 (retrieved 2024-07-01) (CAS RN: 61-90-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].
Ferulic acid
trans-Ferulic acid is a highly abundant phenolic phytochemical which is present in plant cell walls. Ferulic acid is a phenolic acid that can be absorbed by the small intestine and excreted through the urine. It is one of the most abundant phenolic acids in plants, varying from 5 g/kg in wheat bran to 9 g/kg in sugar-beet pulp and 50 g/kg in corn kernel. It occurs primarily in seeds and leaves both in its free form (albeit rarely) and covalently linked to lignin and other biopolymers. It is usually found as ester cross-links with polysaccharides in the cell wall, such as arabinoxylans in grasses, pectin in spinach and sugar beet, and xyloglucans in bamboo. It also can cross-link with proteins. Due to its phenolic nucleus and an extended side chain conjugation (carbohydrates and proteins), it readily forms a resonance-stabilized phenoxy radical which accounts for its potent antioxidant potential. Food supplementation with curcumin and ferulic acid is considered a nutritional approach to reducing oxidative damage and amyloid pathology in Alzheimer disease (PMID:17127365, 1398220, 15453708, 9878519). Ferulic acid can be found in Pseudomonas and Saccharomyces (PMID:8395165). Ferulic acid is a ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. It has a role as an antioxidant, a MALDI matrix material, a plant metabolite, an anti-inflammatory agent, an apoptosis inhibitor and a cardioprotective agent. It is a conjugate acid of a ferulate. Ferulic acid is a natural product found in Haplophyllum griffithianum, Visnea mocanera, and other organisms with data available. Ferulic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Angelica sinensis root (part of). Widely distributed in plants, first isolated from Ferula foetida (asafoetida). Antioxidant used to inhibit oxidn. of fats, pastry products, etc. Antifungal agent used to prevent fruit spoilage. trans-Ferulic acid is found in many foods, some of which are deerberry, peach, shea tree, and common bean. A ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D002491 - Central Nervous System Agents > D000700 - Analgesics D000975 - Antioxidants > D016166 - Free Radical Scavengers D006401 - Hematologic Agents > D000925 - Anticoagulants D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H074 (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively.
Bergamottin
Bergomottin is a furanocoumarin. It has a role as a metabolite. Bergamottin is a natural product found in Hansenia forbesii, Citrus hystrix, and other organisms with data available. See also: Lime (Citrus) (part of). D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins A natural product found in Citrus hystrix. Bergamottin is a potent and competitive CYP1A1 inhibitor with a Ki of 10.703 nM. Bergamottin is a potent and competitive CYP1A1 inhibitor with a Ki of 10.703 nM.
Bergapten
Bergapten, also known as O-methylbergaptol or heraclin, belongs to the class of organic compounds known as 5-methoxypsoralens. These are psoralens containing a methoxy group attached at the C5 position of the psoralen group. Bergapten is found, on average, in the highest concentration within a few different foods, such as anises, figs, and parsnips and in a lower concentration in carrots, fennels, and celery stalks. Bergapten has also been detected, but not quantified, in several different foods, such as coconuts, pepper (c. frutescens), corianders, sesbania flowers, and cardamoms. This could make bergapten a potential biomarker for the consumption of these foods. It is also found in rose hip, sweet marjoram, greenthread tea, and tartary buckwheat. Bergapten is a potentially toxic compound. Bergapten is a major constituent of bergamot oil (Citrus bergamia). Present in celery, especially the outer leaves, and other common grocery vegetables. Implicated in photodermatitis among grocery workers. Bergapten was under investigation in clinical trial NCT00533195 "Comparison of UVA1 Phototherapy Versus Photochemotherapy for Patients With Severe Generalized Atopic Dermatitis". Grayish-white microcrystalline powder or yellow fluffy solid. (NTP, 1992) 5-methoxypsoralen is a 5-methoxyfurocoumarin that is psoralen substituted by a methoxy group at position 5. It has a role as a hepatoprotective agent and a plant metabolite. It is a member of psoralens, a 5-methoxyfurocoumarin and an organic heterotricyclic compound. It is functionally related to a psoralen. Bergapten is under investigation in clinical trial NCT00533195 (Comparison of UVA1 Phototherapy Versus Photochemotherapy for Patients With Severe Generalized Atopic Dermatitis). Bergapten is a natural product found in Ficus auriculata, Ficus virens, and other organisms with data available. A linear furanocoumarin that has phototoxic and anti-inflammatory properties, with effects similar to METHOXSALEN. It is used in PUVA THERAPY for the treatment of PSORIASIS. See also: Parsley (part of); Anise (part of); Angelica archangelica root (part of) ... View More ... Bergapten is a major constituent of bergamot oil (Citrus bergamia). Present in celery, esp. the outer leaves, and other common grocery vegetables. Implicated in photodermatitis among grocery workers. It is also found in rose hip, sweet marjoram, greenthread tea, and tartary buckwheat. D - Dermatologicals > D05 - Antipsoriatics > D05B - Antipsoriatics for systemic use > D05BA - Psoralens for systemic use D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D000893 - Anti-Inflammatory Agents D003879 - Dermatologic Agents CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8020; ORIGINAL_PRECURSOR_SCAN_NO 8017 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8002; ORIGINAL_PRECURSOR_SCAN_NO 8000 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7952; ORIGINAL_PRECURSOR_SCAN_NO 7950 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7968; ORIGINAL_PRECURSOR_SCAN_NO 7967 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8005; ORIGINAL_PRECURSOR_SCAN_NO 8002 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8376; ORIGINAL_PRECURSOR_SCAN_NO 8372 [Raw Data] CBA84_Bergapten_pos_20eV.txt [Raw Data] CBA84_Bergapten_pos_10eV.txt [Raw Data] CBA84_Bergapten_pos_30eV.txt [Raw Data] CBA84_Bergapten_pos_40eV.txt [Raw Data] CBA84_Bergapten_pos_50eV.txt Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms. Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms.
Bergaptol
Bergaptol is a member of psoralens and a 5-hydroxyfurocoumarin. It is a conjugate acid of a bergaptol(1-). Bergaptol is a natural product found in Citrus canaliculata, Hansenia forbesii, and other organisms with data available. Bergaptol is a secondary metabolite of psoralen which has been hydroxylated by liver enzymes during phase I metabolism. Bergaptol is a biomarker for the consumption of citrus fruits. Present in various citrus subspecies Bergaptol is found in many foods, some of which are common hazelnut, hazelnut, alaska blueberry, and groundcherry. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Bergaptol is an inhibitor of debenzylation of the CYP3A4 enzyme with an IC50 of 24.92 uM. Recent studies have shown that it has anti-proliferative and anti-cancer properties. Bergaptol is an inhibitor of debenzylation of the CYP3A4 enzyme with an IC50 of 24.92 uM. Recent studies have shown that it has anti-proliferative and anti-cancer properties.
Xanthotoxol
Isolated from Aegle marmelos (bael fruit), Angelica archangelica (angelica) and the seeds of Pastinaca sativa (parsnip). Xanthotoxol is found in many foods, some of which are fats and oils, green vegetables, herbs and spices, and fig. Xanthotoxol is found in fats and oils. Xanthotoxol is isolated from Aegle marmelos (bael fruit), Angelica archangelica (angelica) and the seeds of Pastinaca sativa (parsnip Xanthotoxol is an 8-hydroxyfurocoumarin. Xanthotoxol is a natural product found in Citrus canaliculata, Prangos tschimganica, and other organisms with data available. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Xanthotoxol (8-Hydroxypsoralen) is a biologically active linear furocoumarin, shows strong pharmacological activities as anti-inflammatory, antioxidant, 5-HT antagonistic, and neuroprotective effects. Xanthotoxol (8-Hydroxypsoralen) It is a kind of fragrant bean substance, and it is a CYP450 inhibitor. Xanthotoxol has anti-inflammatory, anti-inflammatory, and 5-HT antagonistic and protective effects. Xanthotoxol inhibited CYP3A4 sum CYP1A2 IC50s separation 7.43 μM sum 27.82 μM. Xanthotoxol can pass through MAPK and NF-κB, inhibiting inflammation[1][2][3][4]. Xanthotoxol (8-Hydroxypsoralen) is a biologically active linear furocoumarin, shows strong pharmacological activities as anti-inflammatory, antioxidant, 5-HT antagonistic, and neuroprotective effects.
Cnidilin
Cnidilin is a member of psoralens. Cnidilin is a natural product found in Hansenia forbesii, Zanthoxylum americanum, and other organisms with data available.
Falcarindiol
Constituent of roots of several plants including the common carrot (Daucus carota) and Angelica acutiloba (Dong Dang Gui). Falcarindiol is found in many foods, some of which are wild carrot, carrot, garden tomato (variety), and caraway. Falcarindiol is found in caraway. Falcarindiol is a constituent of roots of several plants including the common carrot (Daucus carota) and Angelica acutiloba (Dong Dang Gui). Falcarindiol is a natural product found in Anthriscus nitida, Chaerophyllum aureum, and other organisms with data available. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
Osthenol
Osthenol is a hydroxycoumarin that is umbelliferone in which the hydrogen at position 8 has been replaced by a prenyl group. It has a role as a plant metabolite and an antifungal agent. It is functionally related to an umbelliferone. Osthenol is a natural product found in Zanthoxylum beecheyanum, Prangos tschimganica, and other organisms with data available. Isolated from seeds of Apium graveolens. Osthenol is found in many foods, some of which are green vegetables, wild celery, fennel, and angelica. A hydroxycoumarin that is umbelliferone in which the hydrogen at position 8 has been replaced by a prenyl group. Osthenol is found in angelica. Osthenol is isolated from seeds of Apium graveolens. Osthenol (Ostenol), a prenylated coumarin isolated from the dried roots of Angelica pubescens, is selective, reversible, and competitive human monoamine oxidase-A (hMAO-A) inhibitor (Ki=0.26 μM). Osthenol potently inhibits recombinant hMAO-A with an IC50 of 0.74 μM and shows a high selectivity index for hMAO-A versus hMAO-B[1]. Osthenol (Ostenol), a prenylated coumarin isolated from the dried roots of Angelica pubescens, is selective, reversible, and competitive human monoamine oxidase-A (hMAO-A) inhibitor (Ki=0.26 μM). Osthenol potently inhibits recombinant hMAO-A with an IC50 of 0.74 μM and shows a high selectivity index for hMAO-A versus hMAO-B[1].
Pregnenolone
Pregnenolone is a derivative of cholesterol, the product of cytochrome P450 side-chain cleavage (EC 1.14.15.6, CYP11A1. This reaction consists of three consecutive monooxygenations, a 22-hydroxylation, a 20-hydroxylation, and the cleavage of the C20-C22 bond, yielding pregnenolone. Pregnenolone is the precursor to gonadal steroid hormones and the adrenal corticosteroids. This reaction occurs in steroid hormone-producing tissues such as the adrenal cortex, corpus luteum, and placenta. The most notable difference between the placenta and other steroidogenic tissues is that electron supply to CYP11A1 limits the rate at which cholesterol is converted into pregnenolone in the placenta. The limiting component for electron delivery to CYP11A1 is the concentration of adrenodoxin reductase in the mitochondrial matrix which is insufficient to maintain the adrenodoxin pool in a fully reduced state. Pregnenolone is also a neurosteroid, and is produced in the spinal cord; CYP11A1 is the key enzyme catalyzing the conversion of cholesterol into pregnenolone, the rate-limiting step in the biosynthesis of all classes of steroids, and has been localized in sensory networks of the spinal cord dorsal horn. In the adrenal glomerulosa cell, angiotensin II, one of the major physiological regulators of mineralocorticoid synthesis, appears to affect most of the cholesterol transfer to the mitochondrial outer membrane and many steps in the transport to the inner membrane. Thus, it exerts a powerful control over the use of cholesterol for aldosterone production (PMID: 17222962, 15823613, 16632873, 15134809). C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Pregnenolone (3β-Hydroxy-5-pregnen-20-one) is a powerful neurosteroid, the main precursor of various steroid hormones including steroid ketones. Pregnenolone acts as a signaling-specific inhibitor of cannabinoid CB1 receptor, inhibits the effects of tetrahydrocannabinol (THC) that are mediated by the CB1 receptors. Pregnenolone can protect the brain from cannabis intoxication[1][2]. Pregnenolone is also a TRPM3 channel activator, and also can weakly activate TRPM1 channels[3]. Pregnenolone (3β-Hydroxy-5-pregnen-20-one) is a powerful neurosteroid, the main precursor of various steroid hormones including steroid ketones. Pregnenolone acts as a signaling-specific inhibitor of cannabinoid CB1 receptor, inhibits the effects of tetrahydrocannabinol (THC) that are mediated by the CB1 receptors. Pregnenolone can protect the brain from cannabis intoxication[1][2]. Pregnenolone is also a TRPM3 channel activator, and also can weakly activate TRPM1 channels[3].
Oleic acid
Oleic acid (or 9Z)-Octadecenoic acid) is an unsaturated C-18 or an omega-9 fatty acid that is the most widely distributed and abundant fatty acid in nature. It occurs naturally in various animal and vegetable fats and oils. It is an odorless, colorless oil, although commercial samples may be yellowish. The name derives from the Latin word oleum, which means oil. Oleic acid is the most abundant fatty acid in human adipose tissue, and the second most abundant in human tissues overall, following palmitic acid. Oleic acid is a component of the normal human diet, being a part of animal fats and vegetable oils. Triglycerides of oleic acid represent the majority of olive oil (about 70\\\\%). Oleic acid triglycerides also make up 59–75\\\\% of pecan oil, 61\\\\% of canola oil, 36–67\\\\% of peanut oil, 60\\\\% of macadamia oil, 20–80\\\\% of sunflower oil, 15–20\\\\% of grape seed oil, sea buckthorn oil, 40\\\\% of sesame oil, and 14\\\\% of poppyseed oil. High oleic variants of plant sources such as sunflower (~80\\\\%) and canola oil (70\\\\%) also have been developed. consumption has been associated with decreased low-density lipoprotein (LDL) cholesterol, and possibly with increased high-density lipoprotein (HDL) cholesterol, however, the ability of oleic acid to raise HDL is still debated. Oleic acid may be responsible for the hypotensive (blood pressure reducing) effects of olive oil that is considered a health benefit. Oleic acid is used in manufacturing of surfactants, soaps, plasticizers. It is also used as an emulsifying agent in foods and pharmaceuticals. Oleic acid is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. Major constituent of plant oils e.g. olive oil (ca. 80\\\\%), almond oil (ca. 80\\\\%) and many others, mainly as glyceride. Constituent of tall oiland is also present in apple, melon, raspberry oil, tomato, banana, roasted peanuts, black tea, rice bran, cardamon, plum brandy, peated malt, dairy products and various animal fats. Component of citrus fruit coatings. Emulsifying agent in foods CONFIDENCE standard compound; INTERNAL_ID 290 COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].
Caprate (10:0)
Capric acid, also known as decanoic acid is a C10 saturated fatty acid. It is a member of the series of fatty acids found in oils and animal fats. The names of caproic, caprylic, and capric acids are all derived from the word caper (Latin for goat). These fatty acids are light yellowish transparent oily liquids with a sweaty, unpleasant aroma that is reminiscent of goats. Capric acid is used in the manufacture of esters for artificial fruit flavors and perfumes. It is also used as an intermediate in chemical syntheses. Capric acid is used in organic synthesis and industrially in the manufacture of perfumes, lubricants, greases, rubber, dyes, plastics, food additives and pharmaceuticals. Capric acid occurs naturally in coconut oil (about 10\\\\\\%) and palm kernel oil (about 4\\\\\\%), otherwise it is uncommon in typical seed oils. It is found in the milk of various mammals and to a lesser extent in other animal fats. Capric acid, caproic acid (a C6:0 fatty acid) and caprylic acid (a C8:0 fatty acid) account for about 15\\\\\\% of the fatty acids in goat milk fat (PMID 16747831). Capric acid may be responsible for the mitochondrial proliferation associated with the ketogenic diet, which may occur via PPARgamma receptor agonism and the targeting of genes involved in mitochondrial biogenesis (PMIDL 24383952). Widespread in plant oils and as glycerides in seed oilsand is also present in apple, apricot, banana, morello cherry, citrus fruits, cheese, butter, white wine, Japanese whiskey, peated malt, wort and scallops. It is used as a defoamer, lubricant and citrus fruit coating. Salts (Na, K, Mg, Ca, Al) used as binders, emulsifiers and anticaking agents in food manuf. Decanoic acid is found in many foods, some of which are radish (variety), meatball, phyllo dough, and american shad. Decanoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=334-48-5 (retrieved 2024-06-29) (CAS RN: 334-48-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3].
Heptanoic acid
Heptanoic acid, or C7:0 also known as enanthic acid or heptylic acid, belongs to the class of organic compounds known as medium-chain fatty acids. Medium-chain fatty acids (MCFA) are fatty acids with aliphatic tails of 6 to 12 carbons, which can form medium-chain triglycerides Heptanoic acid is an oily liquid with an unpleasant, rancid odor. It contributes to the odor of some rancid oils. It is slightly soluble in water, but very soluble in ethanol and ether. Its name derives from the Latin oenanthe which is in turn derived from the Ancient Greek oinos "wine" and anthos "blossom." Heptanoic acid is used in the preparation of esters, such as ethyl enanthate, which are used in fragrances and as artificial flavors. The triglyceride ester of heptanoic acid is the triheptanoin, which is used in certain medical conditions as a nutritional supplement. Present in essential oils, e.g. violet leaf oil, palm oiland is also present in apple, feijoa fruit, strawberry jam, clove bud, ginger, black tea, morello cherry, grapes, rice bran and other foodstuffs. Flavouring ingredient. It is used as one of the components in washing solns. used to assist lye peeling of fruit and vegetables
Magnolol
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Magnolol, a natural lignan isolated from the stem bark of Magnolia officinalis, is a dual agonist of both RXRα and PPARγ, with EC50 values of 10.4 μM and 17.7 μM, respectively. Magnolol, a natural lignan isolated from the stem bark of Magnolia officinalis, is a dual agonist of both RXRα and PPARγ, with EC50 values of 10.4 μM and 17.7 μM, respectively. Magnolol, a natural lignan isolated from the stem bark of Magnolia officinalis, is a dual agonist of both RXRα and PPARγ, with EC50 values of 10.4 μM and 17.7 μM, respectively.
Ostruthin
A natural product found in Peucedanum ostruthium.
Pterostilbene
C26170 - Protective Agent > C275 - Antioxidant Pterostilbene is a stilbenoid isolated from blueberries and Pterocarpus marsupium[1]. Shows anti-oxidant, anti-inflammatory, anti-carcinogenic, anti-diabetic and anti-obesity properties[1][4]. Pterostilbene blocks ROS production[3], also exhibits inhibitory activity against various free radicals such as DPPH, ABTS, hydroxyl, superoxide and hydrogen peroxide[4]. Pterostilbene is a stilbenoid isolated from blueberries and Pterocarpus marsupium[1]. Shows anti-oxidant, anti-inflammatory, anti-carcinogenic, anti-diabetic and anti-obesity properties[1][4]. Pterostilbene blocks ROS production[3], also exhibits inhibitory activity against various free radicals such as DPPH, ABTS, hydroxyl, superoxide and hydrogen peroxide[4].
Mangiferol
Mangiferol, also known as alpizarin or chinomin, is a member of the class of compounds known as xanthones. Xanthones are polycyclic aromatic compounds containing a xanthene moiety conjugated to a ketone group at carbon 9. Xanthene is a tricyclic compound made up of two benzene rings linearly fused to each other through a pyran ring. Mangiferol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Mangiferol can be found in mango, which makes mangiferol a potential biomarker for the consumption of this food product. Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3]. Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3].
Cammaconine
C23H37NO5 (407.26715920000004)
D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins
Nonadecanoic acid
Nonadecanoic acid, also known as n-nonadecanoic acid or nonadecylic acid or C19:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms, with nonadecanoic acid (its ester is called nonadecanoate) having 19 carbon atoms. Nonadecanoic acid is a very hydrophobic molecule, practically insoluble (in water). It is a solid with a melting point of 69.4°C. It can be found in bacteria, plants, and animals (including animal milk) (Nature 176:882; PMID: 14168161). It is secreted by termites (Rhinotermes marginalis) as part of its defence mechanism (Comp. Biochem. Physiol. B 71:731). Nonadecanoic acid is a C19 straight-chain fatty acid of plant or bacterial origin. An intermediate in the biodegradation of n-icosane, it has been shown to inhibit cancer growth. It has a role as a fungal metabolite. It is a straight-chain saturated fatty acid and a long-chain fatty acid. It is a conjugate acid of a nonadecanoate. Nonadecanoic acid is a natural product found in Staphisagria macrosperma, Malva sylvestris, and other organisms with data available. An odd-numbered long chain fatty acid, likely derived from bacterial or plant sources. Nonadecanoic acid has been found in ox fats and vegetable oils. It is also used by certain insects as a phermone. [HMDB]. A C19 straight-chain fatty acid of plant or bacterial origin. An intermediate in the biodegradation of n-icosane, it has been shown to inhibit cancer growth. Nonadecanoic acid is a 19-carbon long saturated fatty acid. Nonadecanoic acid is the major constituent of the substance secreted by Rhinotermes marginalis to defence[1]. Nonadecanoic acid is a 19-carbon long saturated fatty acid. Nonadecanoic acid is the major constituent of the substance secreted by Rhinotermes marginalis to defence[1].
D-Aspartic acid
D-Aspartic acid is the D-isomer of aspartic acid. Since its discovery in invertebrates, free D-aspartate (D-Asp) has been identified in a variety of organisms, including microorganisms, plants, and lower animals, mammals and humans. D-Asp in mammalian tissues is present in specific cells, indicating the existence of specific molecular components that regulate D-Asp levels and localization in tissues. In the rat adrenal medulla, D-Asp is closely associated with adrenaline-cells (A-cells), which account for approximately 80\\\\\\% of the total number of chromaffin cells in the tissue, and which make and store adrenaline. D-Asp appears to be absent from noradrenaline-cells (NA-cells), which comprise approximately 20\\\\\\% of the total number of chromaffin cells in the adrenal medulla, and which make and store noradrenaline. D-aspartate oxidase (EC 1.4.3.1, D-AspO), which catalyzes oxidative deamination of D-Asp, appears to be present only in NA-cells, suggesting that the lack of D-Asp in these cells is due to D-Asp oxidase-mediated metabolism of D-Aspecies In the rat adrenal cortex, the distribution of D-Asp changes during development. It has been suggested that developmental changes in the localization of D-Asp reflects the participation of D-Asp in the development and maturation of steroidogenesis in rat adrenal cortical cells. D-Asp is involved in steroid hormone synthesis and secretion in mammals as well. D-Asp is synthesized intracellularly, most likely by Asp racemase (EC 5.1.1.13). Endogenous D-Asp apparently has two different intracellular localization patterns: cytoplasmic and vesicular. D-Asp release can occur through three distinct pathways: 1) spontaneous, continuous release of cytoplasmic D-Asp, which is not associated with a specific stimulus; 2) release of cytoplasmic D-Asp via a volume-sensitive organic anion channel that connects the cytoplasm and extracellular space; 3) exocytotic discharge of vesicular D-Aspecies D-Asp can be released via a mechanism that involves the L-Glu transporter. D-Asp is thus apparently in dynamic flux at the cellular level to carry out its physiological function(s) in mammals. (PMID: 16755369) [HMDB] D-Aspartic acid is the D-isomer of aspartic acid. Since its discovery in invertebrates, free D-aspartate (D-Asp) has been identified in a variety of organisms, including microorganisms, plants, and lower animals, mammals and humans. D-Asp in mammalian tissues is present in specific cells, indicating the existence of specific molecular components that regulate D-Asp levels and localization in tissues. In the rat adrenal medulla, D-Asp is closely associated with adrenaline-cells (A-cells), which account for approximately 80\\\\\\% of the total number of chromaffin cells in the tissue, and which make and store adrenaline. D-Asp appears to be absent from noradrenaline-cells (NA-cells), which comprise approximately 20\\\\\\% of the total number of chromaffin cells in the adrenal medulla, and which make and store noradrenaline. D-aspartate oxidase (EC 1.4.3.1, D-AspO), which catalyzes oxidative deamination of D-Asp, appears to be present only in NA-cells, suggesting that the lack of D-Asp in these cells is due to D-Asp oxidase-mediated metabolism of D-Asp. In the rat adrenal cortex, the distribution of D-Asp changes during development. It has been suggested that developmental changes in the localization of D-Asp reflects the participation of D-Asp in the development and maturation of steroidogenesis in rat adrenal cortical cells. D-Asp is involved in steroid hormone synthesis and secretion in mammals as well. D-Asp is synthesized intracellularly, most likely by Asp racemase (EC 5.1.1.13). Endogenous D-Asp apparently has two different intracellular localization patterns: cytoplasmic and vesicular. D-Asp release can occur through three distinct pathways: 1) spontaneous, continuous release of cytoplasmic D-Asp, which is not associated with a specific stimulus; 2) release of cytoplasmic D-Asp via a volume-sensitive organic anion channel that connects the cytoplasm and extracellular space; 3) exocytotic discharge of vesicular D-Asp. D-Asp can be released via a mechanism that involves the L-Glu transporter. D-Asp is thus apparently in dynamic flux at the cellular level to carry out its physiological function(s) in mammals (PMID:16755369). (-)-Aspartic acid is an endogenous NMDA receptor agonist. (-)-Aspartic acid is an endogenous NMDA receptor agonist. (-)-Aspartic acid is an endogenous NMDA receptor agonist. (-)-Aspartic acid is an endogenous NMDA receptor agonist.
Magnolol
Magnolol is a member of biphenyls. Magnolol is a natural product found in Magnolia garrettii, Illicium simonsii, and other organisms with data available. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Magnolol, a natural lignan isolated from the stem bark of Magnolia officinalis, is a dual agonist of both RXRα and PPARγ, with EC50 values of 10.4 μM and 17.7 μM, respectively. Magnolol, a natural lignan isolated from the stem bark of Magnolia officinalis, is a dual agonist of both RXRα and PPARγ, with EC50 values of 10.4 μM and 17.7 μM, respectively. Magnolol, a natural lignan isolated from the stem bark of Magnolia officinalis, is a dual agonist of both RXRα and PPARγ, with EC50 values of 10.4 μM and 17.7 μM, respectively.
Cedrol
Cedrol is a cedrane sesquiterpenoid and a tertiary alcohol. Cedrol is a natural product found in Xylopia aromatica, Widdringtonia whytei, and other organisms with data available. Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2]. Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2].
4-Methoxycinnamic acid
4-Methoxycinnamic acid, also known as para-methoxycinnamate or O-methyl-p-coumarate, belongs to the class of organic compounds known as cinnamic acids. These are organic aromatic compounds containing a benzene and a carboxylic acid group forming 3-phenylprop-2-enoic acid. Outside of the human body, 4-Methoxycinnamic acid is found, on average, in the highest concentration within turmerics. 4-Methoxycinnamic acid has also been detected, but not quantified in cow milk and wild celeries. This could make 4-methoxycinnamic acid a potential biomarker for the consumption of these foods. 4-methoxycinnamic acid is a methoxycinnamic acid having a single methoxy substituent at the 4-position on the phenyl ring. It is functionally related to a cinnamic acid. 4-Methoxycinnamic acid is a natural product found in Balanophora tobiracola, Murraya euchrestifolia, and other organisms with data available. Esters of p-methoxycinnamic acid are among the popular UV-B screening compounds used in various cosmetic formulations in sunscreen products. trans-p-Methoxycinnamic acid is found in wild celery and turmeric. (E)-3-(4-Methoxyphenyl)acrylic acid (compound 3) is isolated from Arachis hypogaea, Scrophularia buergeriana Miquel, Aquilegia vulgaris, Anigozanthos preissii and so on. (E)-3-(4-Methoxyphenyl)acrylic acid shows significant hepatoprotective activity, anti-amnesic, cognition-enhancing activity, antihyperglycemic, and neuroprotective activities[1]. (E)-3-(4-Methoxyphenyl)acrylic acid (compound 3) is isolated from Arachis hypogaea, Scrophularia buergeriana Miquel, Aquilegia vulgaris, Anigozanthos preissii and so on. (E)-3-(4-Methoxyphenyl)acrylic acid shows significant hepatoprotective activity, anti-amnesic, cognition-enhancing activity, antihyperglycemic, and neuroprotective activities[1]. 4-Methoxycinnamic acid is detected as natural phenylpropanoid in A. preissii. 4-Methoxycinnamic acid is detected as natural phenylpropanoid in A. preissii.
Bergamottin
Bergamottin is found in citrus. Bergamottin is a constituent of bergamot oil. Also from lemon oil and oils of other Citrus species and carrot (Daucus carota) Bergamottin is a natural furanocoumarin found principally in grapefruit juice. It is also found in the oil of bergamot, from which it was first isolated and from which its name is derived. To a lesser extent, bergamottin is also present in the essential oils of other citrus fruits. Along with the chemically related compound 6 ,7 -dihydroxybergamottin, it is believed to be responsible for the grapefruit juice effect in which the consumption of the juice affects the metabolism of a variety of pharmaceutical drugs Constituent of bergamot oiland is also from lemon oil and oils of other Citrus subspecies and carrot (Daucus carota) Bergamottin is a potent and competitive CYP1A1 inhibitor with a Ki of 10.703 nM. Bergamottin is a potent and competitive CYP1A1 inhibitor with a Ki of 10.703 nM.
Umbelliprenin
Isolated from Angelica archangelica (angelica). Umbelliprenin is found in many foods, some of which are coriander, fats and oils, herbs and spices, and green vegetables. Umbelliprenin is found in coriander. Umbelliprenin is isolated from Angelica archangelica (angelica
Mangiferin
Mangiferin is found in fruits. Mangiferin is a constituent of Mangifera indica (mango) Constituent of Mangifera indica (mango). Mangiferin is found in mango and fruits. Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3]. Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3].
Chrysoeriol 7-rutinoside
Chrysoeriol 7-rutinoside is found in german camomile. Chrysoeriol 7-rutinoside is isolated from Matricaria chamomilla (German chamomile). Isolated from Matricaria chamomilla (German chamomile). Chrysoeriol 7-rutinoside is found in german camomile and herbs and spices.
Conferone
Conferone is isolated from Ferula species. Isolated from Ferula subspecies
Heptacosanoic acid
Heptacosanoic acid is a fatty acid found in follicular casts (the abnormal impactation of a sebaceous follicle) implicated as the preclinical lesion of acne vulgaris. (PMID: 2940302). Heptacosanoic acid is one of the fatty acids found that contribute to a significant increase in the microviscosity of erythrocyte membranes in patients affected with adrenoleukodystrophy (ALD) and adrenomyeloneuropathy (AMN). (PMID: 6874949). Heptacosanoic acid has been found in the adrenal cortex and brain, in adrenoleukodystrophy and Zellweger syndrome in humans. (PMID: 3806133). Heptacosanoic acid has been found in blood and tissues of patients with different genetic peroxisomal disorder (Refsums disease, X-linked adrenoleukodystrophy, neonatal adrenoleukodystrophy or Zellweger syndrome). (PMID: 2474624). Heptacosanoic acid is a fatty acid found in follicular casts (the abnormal impactation of a sebaceous follicle) implicated as the preclinical lesion of acne vulgaris. (PMID: 2940302)
3h-Sucrose
C12H22O11 (342.11620619999997)
Sweetening agent and food source assimilated by most organismsand is also used in food products as a preservative, antioxidant, moisture control agent, stabiliser and thickening agent. Widespread in seeds, leaves, fruits, flowers and roots of plants, where it functions as an energy store for metabolism and as a carbon source for biosynth. Annual world production is in excess of 90 x 106 tons mainly from the juice of sugar cane and sugar beet which contain respectively ca. 20\\% and ca. 17\\% of the sugar. Sucrose is found in many foods, some of which are rowanberry, brassicas, calabash, and hedge mustard.
(Z)-p-Methoxycinnamic acid
4-Methoxycinnamic acid is detected as natural phenylpropanoid in A. preissii. 4-Methoxycinnamic acid is detected as natural phenylpropanoid in A. preissii.
Coniferyl ferulate
Pterostilbene
Pterostilbene is a member of the class of compounds known as stilbenes. Stilbenes are organic compounds containing a 1,2-diphenylethylene moiety. Stilbenes (C6-C2-C6 ) are derived from the common phenylpropene (C6-C3) skeleton building block. The introduction of one or more hydroxyl groups to a phenyl ring lead to stilbenoids. Pterostilbene is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Pterostilbene can be found in common grape and grape wine, which makes pterostilbene a potential biomarker for the consumption of these food products. Pterostilbene is a stilbenoid chemically related to resveratrol. In plants, it serves a defensive phytoalexin role . Pterostilbene is a stilbenoid isolated from blueberries and Pterocarpus marsupium[1]. Shows anti-oxidant, anti-inflammatory, anti-carcinogenic, anti-diabetic and anti-obesity properties[1][4]. Pterostilbene blocks ROS production[3], also exhibits inhibitory activity against various free radicals such as DPPH, ABTS, hydroxyl, superoxide and hydrogen peroxide[4]. Pterostilbene is a stilbenoid isolated from blueberries and Pterocarpus marsupium[1]. Shows anti-oxidant, anti-inflammatory, anti-carcinogenic, anti-diabetic and anti-obesity properties[1][4]. Pterostilbene blocks ROS production[3], also exhibits inhibitory activity against various free radicals such as DPPH, ABTS, hydroxyl, superoxide and hydrogen peroxide[4].
Cedrol
Cedrol is a member of the class of compounds known as cedrane and isocedrane sesquiterpenoids. Cedrane and isocedrane sesquiterpenoids are sesquiternoids with a structure based on the cedrane or the isocedrane skeleton. Cedrane is a tricyclic molecules a 3,6,8,8-tetramethyl-1H-3a,7-methano-azulene moiety. Isocedrane is a rearranged cedrane arising from the migration of methyl group moved from the 6-position to the 4-position. Cedrol is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Cedrol is a sweet, cedarwood, and dry tasting compound found in ginger, pepper (spice), and peppermint, which makes cedrol a potential biomarker for the consumption of these food products. Cedrol is a sesquiterpene alcohol found in the essential oil of conifers (cedar oil), especially in the genera Cupressus (cypress) and Juniperus (juniper). It has also been identified in Origanum onites, a plant related to oregano. Its main uses are in the chemistry of aroma compounds. It makes up about 19\\\\% of cedarwood oil Texas and 15.8\\\\% of cedarwood oil Virginia . Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2]. Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2].
C10:0
D000890 - Anti-Infective Agents > D000935 - Antifungal Agents Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3].
Falcarindiol
Falcarindiol is an organic molecular entity. It has a role as a metabolite. 1,9-Heptadecadiene-4,6-diyne-3,8-diol is a natural product found in Peucedanum oreoselinum, Oplopanax horridus, and other organisms with data available. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
Mangiferin
Mangiferin is a C-glycosyl compound consisting of 1,3,6,7-tetrahydroxyxanthen-9-one having a beta-D-glucosyl residue at the 6-position. It has a role as a hypoglycemic agent, an antioxidant, an anti-inflammatory agent and a plant metabolite. It is a C-glycosyl compound and a member of xanthones. It is functionally related to a xanthone. It is a conjugate acid of a mangiferin(1-). Mangiferin is a natural product found in Salacia chinensis, Smilax bracteata, and other organisms with data available. See also: Mangifera indica bark (part of). A C-glycosyl compound consisting of 1,3,6,7-tetrahydroxyxanthen-9-one having a beta-D-glucosyl residue at the 6-position. Origin: Plant Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3]. Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3].
Pterostilbene
Pterostilbene is a stilbenol that consists of trans-stilbene bearing a hydroxy group at position 4 as well as two methoxy substituents at positions 3 and 5. It has a role as an antioxidant, an antineoplastic agent, a neurotransmitter, a plant metabolite, an apoptosis inducer, a neuroprotective agent, an anti-inflammatory agent, a radical scavenger and a hypoglycemic agent. It is a stilbenol, a member of methoxybenzenes and a diether. It derives from a hydride of a trans-stilbene. Pterostilbene is a natural product found in Vitis rupestris, Pterocarpus marsupium, and other organisms with data available. Pterostilbene is a naturally-derived stilbenoid structurally related to resveratrol, with potential antioxidant, anti-inflammatory, pro-apoptotic, antineoplastic and cytoprotective activities. Upon administration, pterostilbene exerts its anti-oxidant activity by scavenging reactive oxygen species (ROS), thereby preventing oxidative stress and ROS-induced cell damage. It may also activate the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated pathway and increase the expression of various antioxidant enzymes, such as superoxide dismutase (SOD). In addition, pterostilbene is able to inhibit inflammation by reducing the expression of various inflammatory mediators, such as interleukin (IL) 1beta, tumor necrosis factor alpha (TNF-a), inducible nitric oxide synthase (iNOS), cyclooxygenases (COX), and nuclear factor kappa B (NF-kB). It also inhibits or prevents the activation of many signaling pathways involved in carcinogenesis, and increases expression of various tumor suppressor genes while decreasing expression of certain tumor promoting genes. It also directly induces apoptosis in tumor cells. See also: Pterocarpus marsupium wood (part of). A stilbenol that consists of trans-stilbene bearing a hydroxy group at position 4 as well as two methoxy substituents at positions 3 and 5. C26170 - Protective Agent > C275 - Antioxidant Pterostilbene is a stilbenoid isolated from blueberries and Pterocarpus marsupium[1]. Shows anti-oxidant, anti-inflammatory, anti-carcinogenic, anti-diabetic and anti-obesity properties[1][4]. Pterostilbene blocks ROS production[3], also exhibits inhibitory activity against various free radicals such as DPPH, ABTS, hydroxyl, superoxide and hydrogen peroxide[4]. Pterostilbene is a stilbenoid isolated from blueberries and Pterocarpus marsupium[1]. Shows anti-oxidant, anti-inflammatory, anti-carcinogenic, anti-diabetic and anti-obesity properties[1][4]. Pterostilbene blocks ROS production[3], also exhibits inhibitory activity against various free radicals such as DPPH, ABTS, hydroxyl, superoxide and hydrogen peroxide[4].
Imperatorin
Imperatorin is an effective of NO synthesis inhibitor (IC50=9.2 μmol), which also is a BChE inhibitor (IC50=31.4 μmol). Imperatorin is a weak agonist of TRPV1 with EC50 of 12.6±3.2 μM. Imperatorin is an effective of NO synthesis inhibitor (IC50=9.2 μmol), which also is a BChE inhibitor (IC50=31.4 μmol). Imperatorin is a weak agonist of TRPV1 with EC50 of 12.6±3.2 μM.
Conferone
Origin: Plant, Coumarins, Coumarin terpenoids, Sesquiterpenoids, Ferula terpenoids
Bergapten
D - Dermatologicals > D05 - Antipsoriatics > D05B - Antipsoriatics for systemic use > D05BA - Psoralens for systemic use D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins relative retention time with respect to 9-anthracene Carboxylic Acid is 0.998 D000893 - Anti-Inflammatory Agents D003879 - Dermatologic Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.995 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2841; CONFIDENCE confident structure Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms. Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms.
4-methoxycinnamic acid
Annotation level-1 CONFIDENCE standard compound; INTERNAL_ID 8214 (E)-3-(4-Methoxyphenyl)acrylic acid (compound 3) is isolated from Arachis hypogaea, Scrophularia buergeriana Miquel, Aquilegia vulgaris, Anigozanthos preissii and so on. (E)-3-(4-Methoxyphenyl)acrylic acid shows significant hepatoprotective activity, anti-amnesic, cognition-enhancing activity, antihyperglycemic, and neuroprotective activities[1]. (E)-3-(4-Methoxyphenyl)acrylic acid (compound 3) is isolated from Arachis hypogaea, Scrophularia buergeriana Miquel, Aquilegia vulgaris, Anigozanthos preissii and so on. (E)-3-(4-Methoxyphenyl)acrylic acid shows significant hepatoprotective activity, anti-amnesic, cognition-enhancing activity, antihyperglycemic, and neuroprotective activities[1]. 4-Methoxycinnamic acid is detected as natural phenylpropanoid in A. preissii. 4-Methoxycinnamic acid is detected as natural phenylpropanoid in A. preissii.
Magnolol
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Annotation level-1 Magnolol, a natural lignan isolated from the stem bark of Magnolia officinalis, is a dual agonist of both RXRα and PPARγ, with EC50 values of 10.4 μM and 17.7 μM, respectively. Magnolol, a natural lignan isolated from the stem bark of Magnolia officinalis, is a dual agonist of both RXRα and PPARγ, with EC50 values of 10.4 μM and 17.7 μM, respectively. Magnolol, a natural lignan isolated from the stem bark of Magnolia officinalis, is a dual agonist of both RXRα and PPARγ, with EC50 values of 10.4 μM and 17.7 μM, respectively.
Nodakenin
Nodakenin is a furanocoumarin. Nodakenin is a natural product found in Hansenia forbesii, Rhodiola rosea, and other organisms with data available. Marmesin galactoside is a member of the class of compounds known as psoralens. Psoralens are organic compounds containing a psoralen moiety, which consists of a furan fused to a chromenone to for 7H-furo[3,2-g]chromen-7-one. Marmesin galactoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Marmesin galactoside can be found in herbs and spices, which makes marmesin galactoside a potential biomarker for the consumption of this food product. Nodakenin is a major coumarin glucoside in the root of Angelica decusiva. Nodakenin inhibits acetylcholinesterase (AChE) activity with an IC50 of 84.7 μM[1][2]. Nodakenin is a major coumarin glucoside in the root of Angelica decusiva. Nodakenin inhibits acetylcholinesterase (AChE) activity with an IC50 of 84.7 μM[1][2].
bergamottin
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.538 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.539 Bergamottin is a potent and competitive CYP1A1 inhibitor with a Ki of 10.703 nM. Bergamottin is a potent and competitive CYP1A1 inhibitor with a Ki of 10.703 nM.
Pregnenolone
A 20-oxo steroid that is pregn-5-ene substituted by a beta-hydroxy group at position 3 and an oxo group at position 20. C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Pregnenolone is a derivative of cholesterol, the product of Cytochrome P450 side-chain cleavage (EC 1.14.15.6, CYP11A1); this reaction consists of three consecutive monooxygenations; a 22-hydroxylation, 20-hydroxylation and the cleavage of the C20-C22 bond, yielding pregnenolone. Pregnenolone is the precursor to gonadal steroid hormones and the adrenal corticosteroids. This reaction occurs in steroid hormone-producing tissues such as the adrenal cortex, corpus luteum and placenta. The most notable difference between the placenta and other steroidogenic tissues is that electron supply to CYP11A1 limits the rate at which cholesterol is converted to pregnenolone in the placenta. The limiting component for electron delivery to CYP11A1 is the concentration of adrenodoxin reductase in the mitochondrial matrix which is insufficient to maintain the adrenodoxin pool in a fully reduced state. Pregnenolone is also a neurosteroid, and is produced in the spinal cord; CYP11A1 is the key enzyme catalyzing the conversion of cholesterol into pregnenolone, the rate-limiting step in the biosynthesis of all classes of steroids, and has been localized in sensory networks of the spinal cord dorsal horn. In the adrenal glomerulosa cell angiotensin II, one of the major physiological regulators of mineralocorticoid synthesis, appears to affect most of the cholesterol transfer to the mitochondrial outer membrane and transport to the inner membrane steps and thus to exerts a powerful control over the use of cholesterol for aldosterone production. (PMID: 17222962, 15823613, 16632873, 15134809) [HMDB]. Pregnenolone is found in many foods, some of which are common wheat, yellow bell pepper, oval-leaf huckleberry, and fenugreek. Pregnenolone (3β-Hydroxy-5-pregnen-20-one) is a powerful neurosteroid, the main precursor of various steroid hormones including steroid ketones. Pregnenolone acts as a signaling-specific inhibitor of cannabinoid CB1 receptor, inhibits the effects of tetrahydrocannabinol (THC) that are mediated by the CB1 receptors. Pregnenolone can protect the brain from cannabis intoxication[1][2]. Pregnenolone is also a TRPM3 channel activator, and also can weakly activate TRPM1 channels[3]. Pregnenolone (3β-Hydroxy-5-pregnen-20-one) is a powerful neurosteroid, the main precursor of various steroid hormones including steroid ketones. Pregnenolone acts as a signaling-specific inhibitor of cannabinoid CB1 receptor, inhibits the effects of tetrahydrocannabinol (THC) that are mediated by the CB1 receptors. Pregnenolone can protect the brain from cannabis intoxication[1][2]. Pregnenolone is also a TRPM3 channel activator, and also can weakly activate TRPM1 channels[3].
Sucrose
C12H22O11 (342.11620619999997)
D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Ferulic acid
(E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively.
L-Leucine
Flavouring ingredient; dietary supplement, nutrient. L-Leucine is found in many foods, some of which are lettuce, common bean, pacific herring, and kefir. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; ROHFNLRQFUQHCH-YFKPBYRVSA-N_STSL_0102_Leucine_8000fmol_180425_S2_LC02_MS02_19; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].
Decanoic acid
Decanoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=334-48-5 (retrieved 2024-06-29) (CAS RN: 334-48-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3].
Oleic acid
An octadec-9-enoic acid in which the double bond at C-9 has Z (cis) stereochemistry. Oleic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=112-80-1 (retrieved 2024-07-16) (CAS RN: 112-80-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Elaidic acid is the major trans fat found in hydrogenated vegetable oils and can be used as a pharmaceutical solvent. Elaidic acid is the major trans fat found in hydrogenated vegetable oils and can be used as a pharmaceutical solvent. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].
Capric acid
D000890 - Anti-Infective Agents > D000935 - Antifungal Agents A C10, straight-chain saturated fatty acid. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3].
D-Aspartic acid
The D-enantiomer of aspartic acid. (-)-Aspartic acid is an endogenous NMDA receptor agonist. (-)-Aspartic acid is an endogenous NMDA receptor agonist. (-)-Aspartic acid is an endogenous NMDA receptor agonist. (-)-Aspartic acid is an endogenous NMDA receptor agonist.
Isoimperatorin
D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Origin: Plant, Coumarins Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM. Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM.
falcarindiol
(+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
Feselol
A natural product found in Ferula gumosa. Origin: Plant, Coumarins, Coumarin terpenoids, Sesquiterpenoids, Ferula terpenoids
2-{[3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
C12H22O11 (342.11620619999997)
HEPTANOIC ACID
A C7, straight-chain fatty acid that contributes to the odour of some rancid oils. Used in the preparation of esters for the fragrance industry, and as an additive in cigarettes.
hydroxyphenethylferulate
p-Hydroxyphenethyl trans-ferulate has anti-hyperglycemic(yeast α-glucosidase,IC50 19.24 ± 1.73 μmol L-1), antioxidant, and anti-inflammatory activities[1]. p-Hydroxyphenethyl trans-ferulate shows inhibiting cancer preve p-Hydroxyphenethyl trans-ferulate has anti-hyperglycemic(yeast α-glucosidase,IC50 19.24 ± 1.73 μmol L-1), antioxidant, and anti-inflammatory activities[1]. p-Hydroxyphenethyl trans-ferulate shows inhibiting cancer preve
Chrysoeriol 7-rutinoside
linoleic
Linolelaidic acid (Linoelaidic acid), an omega-6 trans fatty acid, acts as a source of energy. Linolelaidic acid is an essential nutrient, adding in enteral, parenteral, and infant formulas. Linolelaidic acid can be used for heart diseases research[1]. Linolelaidic acid (Linoelaidic acid), an omega-6 trans fatty acid, acts as a source of energy. Linolelaidic acid is an essential nutrient, adding in enteral, parenteral, and infant formulas. Linolelaidic acid can be used for heart diseases research[1].
Marmesin
Nodakenetin is a marmesin with R-configuration. It has a role as a plant metabolite, a rat metabolite and a xenobiotic metabolite. It is an enantiomer of a (+)-marmesin. Nodakenetin is a natural product found in Zanthoxylum beecheyanum, Melicope barbigera, and other organisms with data available. A marmesin with R-configuration. (+)-marmesin is a marmesin. It is an enantiomer of a nodakenetin. Marmesin is a natural product found in Coronilla scorpioides, Clausena dunniana, and other organisms with data available. Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2]. Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2]. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity.
Xanthotoxol
D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Xanthotoxol (8-Hydroxypsoralen) is a biologically active linear furocoumarin, shows strong pharmacological activities as anti-inflammatory, antioxidant, 5-HT antagonistic, and neuroprotective effects. Xanthotoxol (8-Hydroxypsoralen) It is a kind of fragrant bean substance, and it is a CYP450 inhibitor. Xanthotoxol has anti-inflammatory, anti-inflammatory, and 5-HT antagonistic and protective effects. Xanthotoxol inhibited CYP3A4 sum CYP1A2 IC50s separation 7.43 μM sum 27.82 μM. Xanthotoxol can pass through MAPK and NF-κB, inhibiting inflammation[1][2][3][4]. Xanthotoxol (8-Hydroxypsoralen) is a biologically active linear furocoumarin, shows strong pharmacological activities as anti-inflammatory, antioxidant, 5-HT antagonistic, and neuroprotective effects.
Bergaptol
D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Bergaptol is an inhibitor of debenzylation of the CYP3A4 enzyme with an IC50 of 24.92 uM. Recent studies have shown that it has anti-proliferative and anti-cancer properties. Bergaptol is an inhibitor of debenzylation of the CYP3A4 enzyme with an IC50 of 24.92 uM. Recent studies have shown that it has anti-proliferative and anti-cancer properties.
(-)-Columbianetin
D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins