NCBI Taxonomy: 37540
Buccinum (ncbi_taxid: 37540)
found 14 associated metabolites at genus taxonomy rank level.
Ancestor: Buccinidae
Child Taxonomies: Buccinum undatum, Buccinum oedematum, Buccinum bayani, Buccinum polare, Buccinum tsubai, Buccinum cyaneum, Buccinum koreana, Buccinum glaciale, Buccinum osagawai, Buccinum plectrum, Buccinum aniwanum, Buccinum inclytum, Buccinum pemphigus, Buccinum aleuticum, Buccinum ochotense, Buccinum isaotakii, Buccinum miyauchii, Buccinum ectomocyma, Buccinum nipponense, Buccinum percrassum, Buccinum verkruzeni, Buccinum yokomaruae, Buccinum chishimanum, Buccinum hydrophanum, Buccinum leucostomum, Buccinum tenuissimum, Buccinum unicordatum, unclassified Buccinum, Buccinum opisoplectum, Buccinum middendorffi, Buccinum senshumaruae, Buccinum lamelliferum, Buccinum striatissimum, Buccinum tenuisulcatum, Buccinum cf. kobjakovae AF-2022
Arsenic
Arsenic(As) is a ubiquitous metalloid found in several forms in food and the environment, such as the soil, air and water. Physiologically, it exists as an ion in the body. The predominant form is inorganic arsenic in drinking water, which is both highly toxic and carcinogenic and rapidly bioavailable. Arsenic is currently one of the most important environmental global contaminants and toxicants, particularly in the developing countries. For decades, very large populations have been and are currently still exposed to inorganic Arsenic through geogenically contaminated drinking water. An increased incidence of disease mediated by this toxicant is the consequence of long-term exposure. In humans chronic ingestion of inorganic arsenic (> 500 mg/L As) has been associated with cardiovascular, nervous, hepatic and renal diseases and diabetes mellitus as well as cancer of the skin, bladder, lung, liver and prostate. Contrary to the earlier view that methylated compounds are innocuous, the methylated metabolites are now recognized to be both toxic and carcinogenic, possibly due to genotoxicity, inhibition of antioxidative enzyme functions, or other mechanisms. Arsenic inhibits indirectly sulfhydryl containing enzymes and interferes with cellular metabolism. Effects involve such phenomena as cytotoxicity, genotoxicity and inhibition of enzymes with antioxidant function. These are all related to nutritional factors directly or indirectly. Nutritional studies both in experimental and epidemiological studies provide convincing evidence that nutritional intervention, including chemoprevention, offers a pragmatic approach to mitigate the health effects of arsenic exposure, particularly cancer, in the relatively resource-poor developing countries. Nutritional intervention, especially with micronutrients, many of which are antioxidants and share the same pathway with Arsenic , appears a host defence against the health effects of arsenic contamination in developing countries and should be embraced as it is pragmatic and inexpensive. (PMID: 17477765, 17179408). Arsenic(As) is a ubiquitous metalloid found in several forms in food and the environment, such as the soil, air and water. Physiologically, it exists as an ion in the body. The predominant form is inorganic arsenic in drinking water, which is both highly toxic and carcinogenic and rapidly bioavailable. Arsenic is currently one of the most important environmental global contaminants and toxicants, particularly in the developing countries. For decades, very large populations have been and are currently still exposed to inorganic Arsenic through geogenically contaminated drinking water. An increased incidence of disease mediated by this toxicant is the consequence of long-term exposure. In humans chronic ingestion of inorganic arsenic (> 500 mg/L As) has been associated with cardiovascular, nervous, hepatic and renal diseases and diabetes mellitus as well as cancer of the skin, bladder, lung, liver and prostate. Contrary to the earlier view that methylated compounds are innocuous, the methylated metabolites are now recognized to be both toxic and carcinogenic, possibly due to genotoxicity, inhibition of antioxidative enzyme functions, or other mechanisms. Arsenic inhibits indirectly sulfhydryl containing enzymes and interferes with cellular metabolism. Effects involve such phenomena as cytotoxicity, genotoxicity and inhibition of enzymes with antioxidant function. These are all related to nutritional factors directly or indirectly. Nutritional studies both in experimental and epidemiological studies provide convincing evidence that nutritional intervention, including chemoprevention, offers a pragmatic approach to mitigate the health effects of arsenic exposure, particularly cancer, in the relatively resource-poor developing countries. Nutritional intervention, especially with micronutrients, many of which are antioxidants and share the same pathway with Arsenic , appears a host defence against the health effects of arsenic contamination in developing countries and should be embraced as it is pragmatic and inexpensive. (PMID: 17477765, 17179408)
Arsenobetaine
Arsenobetaine is found in crustaceans. Arsenobetaine is found in algae, lobsters, sharks, etc. Arsenobetaine is an organoarsenic compound that is the main source of arsenic found in fish. It is the arsenic analogue of trimethylglycine, commonly known as betaine. The biochemistry and its biosynthesis are similar to the biosynthesis of choline and betaine. The; Besides several other arsenic compounds, such as dimethylarsine and trimethylarsine, arsenobetaine is a common substance in the marine biological systems for arsenic detoxification. Found in algae, lobsters, sharks, etc.