NCBI Taxonomy: 358
Agrobacterium tumefaciens (ncbi_taxid: 358)
found 30 associated metabolites at species taxonomy rank level.
Ancestor: Agrobacterium tumefaciens complex
Child Taxonomies: Agrobacterium fabacearum P4, Agrobacterium tumefaciens 5A, Agrobacterium tumefaciens F2, Agrobacterium tumefaciens S2, Agrobacterium tumefaciens A6, Agrobacterium fabacearum S56, Agrobacterium tumefaciens GW4, Agrobacterium fabacearum TT111, Agrobacterium tumefaciens WRT31, Agrobacterium tumefaciens str. B6, Agrobacterium tumefaciens (strain B2A), Agrobacterium fabacearum CFBP 5771, Agrobacterium tumefaciens CCNWGS0286, Agrobacterium fabacearum str. Foundi, Agrobacterium tumefaciens (strain T37), Agrobacterium tumefaciens str. Kerr 14, Agrobacterium tumefaciens (strain RS5), Agrobacterium tumefaciens (strain II CHRYS), Agrobacterium tumefaciens (strain Ach5), Agrobacterium tumefaciens (strain apple 185), Agrobacterium tumefaciens LBA4213 (Ach5), Agrobacterium tumefaciens (strain 15955), Agrobacterium tumefaciens str. CFBP 5621, Agrobacterium tumefaciens str. Cherry 2E-2-2
Indole-3-lactic acid
Indolelactic acid (CAS: 1821-52-9) is a tryptophan metabolite found in human plasma, serum, and urine. Tryptophan is metabolized by two major pathways in humans, either through kynurenine or via a series of indoles, and some of its metabolites are known to be biologically active. Indolelactic acid is present in various amounts, significantly higher in umbilical fetal plasma than in maternal plasma in the protein-bound form (PMID 2361979, 1400722, 3597614, 11060358, 1400722). Indolelactic acid is also a microbial metabolite; urinary indole-3-lactate is produced by Clostridium sporogenes (PMID: 29168502). Indolelactic acid is a tryptophan metabolite found in human plasma and serum and normal urine. Tryptophan is metabolized by two major pathways in humans, either through kynurenine or via a series of indoles, and some of its metabolites are known to be biologically active. Indolelactic acid is present in various amounts, significantly higher in umbilical foetal plasma than in maternal plasma in the protein-bound form. (PMID 2361979, 1400722, 3597614, 11060358, 1400722) [HMDB] Indolelactic acid (Indole-3-lactic acid) is a tryptophan (Trp) catabolite in Azotobacter vinelandii cultures. Indolelactic acid has anti-inflammation and potential anti-viral activity[1][3][4].
9-(beta-D-Ribofuranosyl)zeatin
C15H21N5O5 (351.15426160000004)
9-(beta-D-Ribofuranosyl)-(Z)-Zeatin is found in alfalfa. Zeatin is a plant hormone derived from the purine adenine. It is a member of the plant growth hormone family known as cytokinins. Zeatin was first discovered in immature corn kernels from the genus Zea. Zeatin and derivatives were discovered to be the primary active ingredient in coconut milk, which has long been known to actively induce plant growth. As in the case of kinetin, zeatin has also been reported to have several in vitro anti-aging effects on human skin fibroblasts.(Wikipedia). Isolated from many plants. (E)-Ribosylzeatin is found in many foods, some of which are cauliflower, chicory, chayote, and wild carrot. trans-Zeatinriboside is a type of cytokinin precursor, acts as a major long-distance signalling form in xylem vessels, regulates leaf size and meristem activity-related traits. trans-Zeatinriboside is a type of cytokinin precursor, acts as a major long-distance signalling form in xylem vessels, regulates leaf size and meristem activity-related traits. trans-Zeatinriboside is a type of cytokinin precursor, acts as a major long-distance signalling form in xylem vessels, regulates leaf size and meristem activity-related traits.
2-Methylthio-N6-(delta2-isopentenyl)adenosine
C16H23N5O4S (381.14706780000006)
2-methylthio-n6-(delta2-isopentenyl)adenosine, also known as n(6)-(delta(2)-isopentenyl)-2-methylthioadenosine or 2-mtia, is a member of the class of compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl moiety. 2-methylthio-n6-(delta2-isopentenyl)adenosine is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 2-methylthio-n6-(delta2-isopentenyl)adenosine can be found in cauliflower, which makes 2-methylthio-n6-(delta2-isopentenyl)adenosine a potential biomarker for the consumption of this food product. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D003583 - Cytokinins
(E)-indol-3-ylacetaldoxime
(e)-indol-3-ylacetaldoxime is a member of the class of compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position (e)-indol-3-ylacetaldoxime is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (e)-indol-3-ylacetaldoxime can be found in a number of food items such as cherimoya, cornmint, blackcurrant, and common grape, which makes (e)-indol-3-ylacetaldoxime a potential biomarker for the consumption of these food products. (e)-indol-3-ylacetaldoxime is a member of the class of compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position (e)-indol-3-ylacetaldoxime is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (e)-indol-3-ylacetaldoxime can be found in a number of food items such as peppermint, wakame, sweet marjoram, and cashew nut, which makes (e)-indol-3-ylacetaldoxime a potential biomarker for the consumption of these food products.
Indolelactic acid
Indolelactic acid (Indole-3-lactic acid) is a tryptophan (Trp) catabolite in Azotobacter vinelandii cultures. Indolelactic acid has anti-inflammation and potential anti-viral activity[1][3][4].
9-ribosylzeatin
C15H21N5O5 (351.15426160000004)
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.545 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.538 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.540
Indole-3-lactic Acid
Indolelactic acid (Indole-3-lactic acid) is a tryptophan (Trp) catabolite in Azotobacter vinelandii cultures. Indolelactic acid has anti-inflammation and potential anti-viral activity[1][3][4].
(2r,3r,4s,5s)-2-(6-{[(2z)-4-hydroxy-3-methylbut-2-en-1-yl]amino}purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol
C15H21N5O5 (351.15426160000004)
n-{3-[n-(4-{[(2,3-dihydroxyphenyl)(hydroxy)methylidene]amino}butyl)-1-[(4s,5r)-2-[(1z)-5-hydroxy-6-oxocyclohexa-2,4-dien-1-ylidene]-5-methyl-1,3-oxazolidin-4-yl]formamido]propyl}-2,3-dihydroxybenzenecarboximidic acid
(2r,3s,4r,5r)-2-(6-{[(2e)-4-hydroxy-3-methylbut-2-en-1-yl]amino}-2-(methylsulfanyl)purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol
C16H23N5O5S (397.14198280000005)