NCBI Taxonomy: 301959

Mytilinae (ncbi_taxid: 301959)

found 135 associated metabolites at subfamily taxonomy rank level.

Ancestor: Mytilidae

Child Taxonomies: Perna, Mytilus, Septifer, Trichomya, Aulacomya, Mytilaster, Semimytilus, Byssogerdius, Crenomytilus, Choromytilus

Ergosterol

(1R,3aR,7S,9aR,9bS,11aR)-1-[(2R,3E,5R)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1H,2H,3H,3aH,6H,7H,8H,9H,9aH,9bH,10H,11H,11aH-cyclopenta[a]phenanthren-7-ol

C28H44O (396.3391974)


Ergosterol is a phytosterol consisting of ergostane having double bonds at the 5,6-, 7,8- and 22,23-positions as well as a 3beta-hydroxy group. It has a role as a fungal metabolite and a Saccharomyces cerevisiae metabolite. It is a 3beta-sterol, an ergostanoid, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. A steroid of interest both because its biosynthesis in FUNGI is a target of ANTIFUNGAL AGENTS, notably AZOLES, and because when it is present in SKIN of animals, ULTRAVIOLET RAYS break a bond to result in ERGOCALCIFEROL. Ergosterol is a natural product found in Gladiolus italicus, Ramaria formosa, and other organisms with data available. ergosterol is a metabolite found in or produced by Saccharomyces cerevisiae. A steroid occurring in FUNGI. Irradiation with ULTRAVIOLET RAYS results in formation of ERGOCALCIFEROL (vitamin D2). See also: Reishi (part of). Ergosterol, also known as provitamin D2, belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, ergosterol is considered to be a sterol lipid molecule. Ergosterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Ergosterol is the biological precursor to vitamin D2. It is turned into viosterol by ultraviolet light, and is then converted into ergocalciferol, which is a form of vitamin D. Ergosterol is a component of fungal cell membranes, serving the same function that cholesterol serves in animal cells. Ergosterol is not found in mammalian cell membranes. A phytosterol consisting of ergostane having double bonds at the 5,6-, 7,8- and 22,23-positions as well as a 3beta-hydroxy group. Ergosterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57-87-4 (retrieved 2024-07-12) (CAS RN: 57-87-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects. Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects.

   

beta-Carotene

1,3,3-trimethyl-2-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-1-ene

C40H56 (536.4381776)


Beta-carotene is a cyclic carotene obtained by dimerisation of all-trans-retinol. A strongly-coloured red-orange pigment abundant in plants and fruit and the most active and important provitamin A carotenoid. It has a role as a biological pigment, a provitamin A, a plant metabolite, a human metabolite, a mouse metabolite, a cofactor, a ferroptosis inhibitor and an antioxidant. It is a cyclic carotene and a carotenoid beta-end derivative. Beta-carotene, with the molecular formula C40H56, belongs to the group of carotenoids consisting of isoprene units. The presence of long chains of conjugated double bonds donates beta-carotene with specific colors. It is the most abundant form of carotenoid and it is a precursor of the vitamin A. Beta-carotene is composed of two retinyl groups. It is an antioxidant that can be found in yellow, orange and green leafy vegetables and fruits. Under the FDA, beta-carotene is considered as a generally recognized as safe substance (GRAS). Beta-Carotene is a natural product found in Epicoccum nigrum, Lonicera japonica, and other organisms with data available. Beta-Carotene is a naturally-occurring retinol (vitamin A) precursor obtained from certain fruits and vegetables with potential antineoplastic and chemopreventive activities. As an anti-oxidant, beta carotene inhibits free-radical damage to DNA. This agent also induces cell differentiation and apoptosis of some tumor cell types, particularly in early stages of tumorigenesis, and enhances immune system activity by stimulating the release of natural killer cells, lymphocytes, and monocytes. (NCI04) beta-Carotene is a metabolite found in or produced by Saccharomyces cerevisiae. A carotenoid that is a precursor of VITAMIN A. Beta carotene is administered to reduce the severity of photosensitivity reactions in patients with erythropoietic protoporphyria (PORPHYRIA, ERYTHROPOIETIC). See also: Lycopene (part of); Broccoli (part of); Lycium barbarum fruit (part of). Beta-Carotene belongs to the class of organic compounds known as carotenes. These are a type of polyunsaturated hydrocarbon molecules containing eight consecutive isoprene units. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Beta-carotene is therefore considered to be an isoprenoid lipid molecule. Beta-carotene is a strongly coloured red-orange pigment abundant in fungi, plants, and fruits. It is synthesized biochemically from eight isoprene units and therefore has 40 carbons. Among the carotenes, beta-carotene is distinguished by having beta-rings at both ends of the molecule. Beta-Carotene is biosynthesized from geranylgeranyl pyrophosphate. It is the most common form of carotene in plants. In nature, Beta-carotene is a precursor (inactive form) to vitamin A. Vitamin A is produed via the action of beta-carotene 15,15-monooxygenase on carotenes. In mammals, carotenoid absorption is restricted to the duodenum of the small intestine and dependent on a class B scavenger receptor (SR-B1) membrane protein, which is also responsible for the absorption of vitamin E. One molecule of beta-carotene can be cleaved by the intestinal enzyme Beta-Beta-carotene 15,15-monooxygenase into two molecules of vitamin A. Beta-Carotene contributes to the orange color of many different fruits and vegetables. Vietnamese gac and crude palm oil are particularly rich sources, as are yellow and orange fruits, such as cantaloupe, mangoes, pumpkin, and papayas, and orange root vegetables such as carrots and sweet potatoes. Excess beta-carotene is predominantly stored in the fat tissues of the body. The most common side effect of excessive beta-carotene consumption is carotenodermia, a physically harmless condition that presents as a conspicuous orange skin tint arising from deposition of the carotenoid in the outermost layer of the epidermis. Yellow food colour, dietary supplement, nutrient, Vitamin A precursor. Nutriceutical with antioxidation props. beta-Carotene is found in many foods, some of which are summer savory, gram bean, sunburst squash (pattypan squash), and other bread product. A cyclic carotene obtained by dimerisation of all-trans-retinol. A strongly-coloured red-orange pigment abundant in plants and fruit and the most active and important provitamin A carotenoid. D - Dermatologicals > D02 - Emollients and protectives > D02B - Protectives against uv-radiation > D02BB - Protectives against uv-radiation for systemic use A - Alimentary tract and metabolism > A11 - Vitamins > A11C - Vitamin a and d, incl. combinations of the two > A11CA - Vitamin a, plain D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins

   

Astaxanthin

3,3-Dihydroxy-beta,beta-carotene-4,4-dione;(S)-6-hydroxy-3-((1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-((S)-4-hydroxy-2,6,6-trimethyl-3-oxocyclohex-1-enyl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaenyl)-2,4,4-trimethylcyclohex-2-enone;

C40H52O4 (596.3865392)


Astaxanthin (pronounced as-tuh-zan-thin) is a carotenoid. It belongs to a larger class of phytochemicals known as terpenes. It is classified as a xanthophyll, which means "yellow leaves". Like many carotenoids, it is a colorful, lipid-soluble pigment. Astaxanthin is produced by microalgae, yeast, salmon, trout, krill, shrimp, crayfish, crustaceans, and the feathers of some birds. Professor Basil Weedon was the first to map the structure of astaxanthin.; Astaxanthin is the main carotenoid pigment found in aquatic animals. It is also found in some birds, such as flamingoes, quails, and other species. This carotenoid is included in many well-known seafoods such as salmon, trout, red seabream, shrimp, lobster, and fish eggs. Astaxanthin, similar to other carotenoids, cannot be synthesized by animals and must be provided in the diet. Mammals, including humans, lack the ability to synthesize astaxanthin or to convert dietary astaxanthin into vitamin A. Astaxanthin belongs to the xanthophyll class of carotenoids. It is closely related to beta-carotene, lutein, and zeaxanthin, sharing with them many of the general metabolic and physiological functions attributed to carotenoids. In addition, astaxanthin has unique chemical properties based on its molecular structure. The presence of the hydroxyl (OH) and keto (CdO) moieties on each ionone ring explains some of its unique features, namely, the ability to be esterified and a higher antioxidant activity and a more polar nature than other carotenoids. In its free form, astaxanthin is considerably unstable and particularly susceptible to oxidation. Hence it is found in nature either conjugated with proteins (e.g., salmon muscle or lobster exoskeleton) or esterified with one or two fatty acids (monoester and diester forms), which stabilize the molecule. Various astaxanthin isomers have been characterized on the basis of the configuration of the two hydroxyl groups on the molecule. the geometrical and optical isomers of astaxanthin are distributed selectively in different tissues and that levels of free astaxanthin in the liver are greater than the corresponding concentration in the plasma, suggesting concentrative uptake by the liver. Astaxanthin, similar to other carotenoids, is a very lipophilic compound and has a low oral bioavailability. This criterion has limited the ability to test this compound in well-defined rodent models of human disease. (PMID: 16562856); Astaxanthin is a carotenoid widely used in salmonid and crustacean aquaculture to provide the pink color characteristic of that species. This application has been well documented for over two decades and is currently the major market driver for the pigment. Additionally, astaxanthin also plays a key role as an intermediary in reproductive processes. Synthetic astaxanthin dominates the world market but recent interest in natural sources of the pigment has increased substantially. Common sources of natural astaxanthin are the green algae Haematococcus pluvialis, the red yeast, Phaffia rhodozyma, as well as crustacean byproducts. Astaxanthin possesses an unusual antioxidant activity which has caused a surge in the nutraceutical market for the encapsulated productand is) also, health benefits such as cardiovascular disease prevention, immune system boosting, bioactivity against Helycobacter pylori, and cataract prevention, have been associated with astaxanthin consumption. Research on the health benefits of astaxanthin is very recent and has mostly been performed in vitro or at the pre-clinical level with humans. (PMID: 16431409); Astaxanthin, unlike some carotenoids, does not convert to Vitamin A (retinol) in the human body. Too much Vitamin A is toxic for a human, but astaxanthin is not. However, it is a powerful antioxidant; it is claimed to be 10 times more capable than other carotenoids. However, other sources suggest astaxanthin has slightly lower antioxidant activity than other carotenoids.; While astaxanthin is a natural nutr... Astaxanthin is the main carotenoid pigment found in aquatic animals. It is also found in some birds, such as flamingoes, quails, and other species. This carotenoid is included in many well-known seafoods such as salmon, trout, red seabream, shrimp, lobster, and fish eggs. Astaxanthin, similar to other carotenoids, cannot be synthesized by animals and must be provided in the diet. Mammals, including humans, lack the ability to synthesize astaxanthin or to convert dietary astaxanthin into vitamin A. Astaxanthin belongs to the xanthophyll class of carotenoids. It is closely related to beta-carotene, lutein, and zeaxanthin, sharing with them many of the general metabolic and physiological functions attributed to carotenoids. In addition, astaxanthin has unique chemical properties based on its molecular structure. The presence of the hydroxyl (OH) and keto (CdO) moieties on each ionone ring explains some of its unique features, namely, the ability to be esterified and a higher antioxidant activity and a more polar nature than other carotenoids. In its free form, astaxanthin is considerably unstable and particularly susceptible to oxidation. Hence it is found in nature either conjugated with proteins (e.g. salmon muscle or lobster exoskeleton) or esterified with one or two fatty acids (monoester and diester forms) which stabilize the molecule. Various astaxanthin isomers have been characterized on the basis of the configuration of the two hydroxyl groups on the molecule. The geometrical and optical isomers of astaxanthin are distributed selectively in different tissues and levels of free astaxanthin in the liver are greater than the corresponding concentration in the plasma, suggesting concentrative uptake by the liver. Astaxanthin, similar to other carotenoids, is a very lipophilic compound and has a low oral bioavailability. This criterion has limited the ability to test this compound in well-defined rodent models of human disease (PMID: 16562856). Astaxanthin is a carotenoid widely used in salmonid and crustacean aquaculture to provide the pink colour characteristic of that species. This application has been well documented for over two decades and is currently the major market driver for the pigment. Additionally, astaxanthin also plays a key role as an intermediary in reproductive processes. Synthetic astaxanthin dominates the world market but recent interest in natural sources of the pigment has increased substantially. Common sources of natural astaxanthin are the green algae Haematococcus pluvialis (the red yeast), Phaffia rhodozyma, as well as crustacean byproducts. Astaxanthin possesses an unusual antioxidant activity which has caused a surge in the nutraceutical market for the encapsulated product. Also, health benefits such as cardiovascular disease prevention, immune system boosting, bioactivity against Helicobacter pylori, and cataract prevention, have been associated with astaxanthin consumption. Research on the health benefits of astaxanthin is very recent and has mostly been performed in vitro or at the pre-clinical level with humans (PMID: 16431409). Astaxanthin is used in fish farming to induce trout flesh colouring. Astaxanthin is a carotenone that consists of beta,beta-carotene-4,4-dione bearing two hydroxy substituents at positions 3 and 3 (the 3S,3S diastereomer). A carotenoid pigment found mainly in animals (crustaceans, echinoderms) but also occurring in plants. It can occur free (as a red pigment), as an ester, or as a blue, brown or green chromoprotein. It has a role as an anticoagulant, an antioxidant, a food colouring, a plant metabolite and an animal metabolite. It is a carotenone and a carotenol. It derives from a hydride of a beta-carotene. Astaxanthin is a keto-carotenoid in the terpenes class of chemical compounds. It is classified as a xanthophyll but it is a carotenoid with no vitamin A activity. It is found in the majority of aquatic organisms with red pigment. Astaxanthin has shown to mediate anti-oxidant and anti-inflammatory actions. It may be found in fish feed or some animal food as a color additive. Astaxanthin is a natural product found in Ascidia zara, Linckia laevigata, and other organisms with data available. Astaxanthin is a natural and synthetic xanthophyll and nonprovitamin A carotenoid, with potential antioxidant, anti-inflammatory and antineoplastic activities. Upon administration, astaxanthin may act as an antioxidant and reduce oxidative stress, thereby preventing protein and lipid oxidation and DNA damage. By decreasing the production of reactive oxygen species (ROS) and free radicals, it may also prevent ROS-induced activation of nuclear factor-kappa B (NF-kB) transcription factor and the production of inflammatory cytokines such as interleukin-1beta (IL-1b), IL-6 and tumor necrosis factor-alpha (TNF-a). In addition, astaxanthin may inhibit cyclooxygenase-1 (COX-1) and nitric oxide (NO) activities, thereby reducing inflammation. Oxidative stress and inflammation play key roles in the pathogenesis of many diseases, including cardiovascular, neurological, autoimmune and neoplastic diseases. A carotenone that consists of beta,beta-carotene-4,4-dione bearing two hydroxy substituents at positions 3 and 3 (the 3S,3S diastereomer). A carotenoid pigment found mainly in animals (crustaceans, echinoderms) but also occurring in plants. It can occur free (as a red pigment), as an ester, or as a blue, brown or green chromoprotein. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids C308 - Immunotherapeutic Agent > C210 - Immunoadjuvant C2140 - Adjuvant

   

Morphine

(1S,5R,13R,14S,17R)-4-methyl-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7(18),8,10,15-tetraene-10,14-diol

C17H19NO3 (285.13648639999997)


Morphine, also known as (-)-morphine or morphine sulfate, is a member of the class of compounds known as morphinans. Morphinans are polycyclic compounds with a four-ring skeleton with three condensed six-member rings forming a partially hydrogenated phenanthrene moiety, one of which is aromatic while the two others are alicyclic. Morphine is soluble (in water) and a very weakly acidic compound (based on its pKa). Morphine can be synthesized from morphinan. Morphine is also a parent compound for other transformation products, including but not limited to, myrophine, heroin, and codeine. Morphine can be found in a number of food items such as nanking cherry, eggplant, millet, and common hazelnut, which makes morphine a potential biomarker for the consumption of these food products. Morphine can be found primarily in blood and urine, as well as in human kidney and liver tissues. In humans, morphine is involved in several metabolic pathways, some of which include heroin action pathway, morphine metabolism pathway, heroin metabolism pathway, and codeine metabolism pathway. Morphine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Morphine is a drug which is used for the relief and treatment of severe pain. The primary source of morphine is isolation from poppy straw of the opium poppy. In 2013, an estimated 523 000 kg of morphine were produced. About 45 000 kg were used directly for pain, a four-time increase over the last twenty years. Most use for this purpose was in the developed world. About 70\\% of morphine is used to make other opioids such as hydromorphone, oxymorphone, and heroin. It is a Schedule II drug in the United States, Class A in the United Kingdom, and Schedule I in Canada. It is on the World Health Organizations List of Essential Medicines, the most effective and safe medicines needed in a health system. Morphine is sold under many trade names . Primarily hepatic (90\\%), converted to dihydromorphinone and normorphineand is) also converted to morphine-3-glucuronide (M3G) and morphine-6-glucuronide. Virtually all morphine is converted to glucuronide metabolites; only a small fraction (less than 5\\%) of absorbed morphine is demethylated (DrugBank). In the treatment of morphine overdosage, primary attention should be given to the re- establishment of a patent airway and institution of assisted or controlled ventilation. Supportive measures (including oxygen, vasopressors) should be employed in the management of circulatory shock and pulmonary edema accompanying overdose as indicated. Cardiac arrest or arrhythmias may require cardiac massage or defibrillation. The pure opioid antagonists, such as naloxone, are specific antidotes against respiratory depression which results from opioid overdose. Naloxone should be administered intravenously; however, because its duration of action is relatively short, the patient must be carefully monitored until spontaneous respiration is reliably re-established. If the response to naloxone is suboptimal or not sustained, additional naloxone may be administered, as needed, or given by continuous infusion to maintain alertness and respiratory function; however, there is no information available about the cumulative dose of naloxone that may be safely administered (L1712) (T3DB). Morphine is the principal alkaloid in opium and the prototype opiate analgesic and narcotic. In 2017, morphine was the 155th most commonly prescribed medication in the United States, with more than four million prescriptions. Morphine is used primarily to treat both acute and chronic severe pain. Its duration of analgesia is about three to seven hours. A large overdose of morphine can cause asphyxia and death by respiratory depression if the person does not receive medical attention immediately. Morphine is naturally produced by several plants (such as the opium poppy) and animals (PMID: 22578954). Morphine was first isolated between 1803 and 1805 by Friedrich Sertürner. Sertürner originally named the substance morphium after the Greek god of dreams, Morpheus, as it has a tendency to cause sleep. The primary source of morphine is isolation from poppy straw of the opium poppy. Morphine is also endogenously produced by humans. In the mid 2000s it was found morphine can be synthesized by white blood cells (PMID 22578954). CYP2D6, a cytochrome P450 isoenzyme, catalyzes the biosynthesis of morphine from codeine and dopamine from tyramine. The morphine biosynthetic pathway in humans occurs as follows: L-tyrosine -> para-tyramine or L-DOPA -> dopamine -> (S)-norlaudanosoline -> (S)-reticuline -> 1,2-dehydroretinulinium -> (R)-reticuline -> salutaridine -> salutaridinol -> thebaine -> neopinone -> codeinone -> codeine -> morphine. (S)-Norlaudanosoline (also known as tetrahydropapaveroline) which is an important intermediate in the WBC biosynthesis of morphine can also be synthesized from 3,4-dihydroxyphenylacetaldehyde (DOPAL), a metabolite of L-DOPA and dopamine. Morphine has widespread effects in the central nervous system and on smooth muscle (PMID: 4582903). The precise mechanism of the analgesic action of morphine is not fully known. However, specific CNS opiate receptors have been identified and likely play a role in the induction of analgesic effects. Morphine first acts on the mu-opioid receptors. The mechanism of respiratory depression involves a reduction in the responsiveness of the brain stem respiratory centers to increases in carbon dioxide tension and electrical stimulation. It has been shown that morphine binds to and inhibits GABA inhibitory interneurons. These interneurons normally inhibit the descending pain inhibition pathway. So, without the inhibitory signals, pain modulation can proceed downstream. When the dose of morphine is reduced after long-term use, opioid withdrawal symptoms such as drowsiness, vomiting, and constipation may also occur (PMID: 23244430). Morphine is only found in easily detectable quantities in individuals that have used or taken this drug. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist > C1657 - Opiate N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 0.056 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; EAWAG_UCHEM_ID 2744 CONFIDENCE standard compound; INTERNAL_ID 1580

   

Morphine-6-glucuronide

(2S,3S,4S,5R,6R)-3,4,5-trihydroxy-6-{[(1S,5R,13R,14S,17R)-10-hydroxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7(18),8,10,15-tetraen-14-yl]oxy}oxane-2-carboxylic acid

C23H27NO9 (461.1685732000001)


Morphine-6-glucuronide (M6G) is a major active metabolite of morphine, and as such is the molecule responsible for much of the pain-relieving effects of morphine (and thus heroin). M6G is formed from morphine by the enzyme UDP-Glucuronosyltransferase-2B7 (UGT2B7). M6G can accumulate to toxic levels in kidney failure. D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist > C1657 - Opiate

   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548466)


Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues and transported in the blood plasma of all animals. The name originates from the Greek chole- (bile) and stereos (solid), and the chemical suffix -ol for an alcohol. This is because researchers first identified cholesterol in solid form in gallstones in 1784. In the body, cholesterol can exist in either the free form or as an ester with a single fatty acid (of 10-20 carbons in length) covalently attached to the hydroxyl group at position 3 of the cholesterol ring. Due to the mechanism of synthesis, plasma cholesterol esters tend to contain relatively high proportions of polyunsaturated fatty acids. Most of the cholesterol consumed as a dietary lipid exists as cholesterol esters. Cholesterol esters have a lower solubility in water than cholesterol and are more hydrophobic. They are hydrolyzed by the pancreatic enzyme cholesterol esterase to produce cholesterol and free fatty acids. Cholesterol has vital structural roles in membranes and in lipid metabolism in general. It is a biosynthetic precursor of bile acids, vitamin D, and steroid hormones (glucocorticoids, estrogens, progesterones, androgens and aldosterone). In addition, it contributes to the development and functioning of the central nervous system, and it has major functions in signal transduction and sperm development. Cholesterol is a ubiquitous component of all animal tissues where much of it is located in the membranes, although it is not evenly distributed. The highest proportion of unesterified cholesterol is in the plasma membrane (roughly 30-50\\\\% of the lipid in the membrane or 60-80\\\\% of the cholesterol in the cell), while mitochondria and the endoplasmic reticulum have very low cholesterol contents. Cholesterol is also enriched in early and recycling endosomes, but not in late endosomes. The brain contains more cholesterol than any other organ where it comprises roughly a quarter of the total free cholesterol in the human body. Of all the organic constituents of blood, only glucose is present in a higher molar concentration than cholesterol. Cholesterol esters appear to be the preferred form for transport in plasma and as a biologically inert storage (de-toxified) form. They do not contribute to membranes but are packed into intracellular lipid particles. Cholesterol molecules (i.e. cholesterol esters) are transported throughout the body via lipoprotein particles. The largest lipoproteins, which primarily transport fats from the intestinal mucosa to the liver, are called chylomicrons. They carry mostly triglyceride fats and cholesterol that are from food, especially internal cholesterol secreted by the liver into the bile. In the liver, chylomicron particles give up triglycerides and some cholesterol. They are then converted into low-density lipoprotein (LDL) particles, which carry triglycerides and cholesterol on to other body cells. In healthy individuals, the LDL particles are large and relatively few in number. In contrast, large numbers of small LDL particles are strongly associated with promoting atheromatous disease within the arteries. (Lack of information on LDL particle number and size is one of the major problems of conventional lipid tests.). In conditions with elevated concentrations of oxidized LDL particles, especially small LDL particles, cholesterol promotes atheroma plaque deposits in the walls of arteries, a condition known as atherosclerosis, which is a major contributor to coronary heart disease and other forms of cardiovascular disease. There is a worldwide trend to believe that lower total cholesterol levels tend to correlate with lower atherosclerosis event rates (though some studies refute this idea). As a result, cholesterol has become a very large focus for the scientific community trying to determine the proper amount of cholesterol needed in a healthy diet. However, the primary association of atherosclerosis with c... Constituent either free or as esters, of fish liver oils, lard, dairy fats, egg yolk and bran Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

7-Dehydrocholesterol

(1S,2R,5S,11R,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-7,9-dien-5-ol

C27H44O (384.3391974)


7-Dehydrocholesterol (7-DHC), also known as provitamin D3 or 5,7-cholestadien-3-b-ol, belongs to the class of organic compounds known as cholesterols and derivatives. Cholesterols and derivatives are compounds containing a 3-hydroxylated cholestane core. Thus, 7-dehydrocholesterol is also classified as a sterol. 7-Dehydrocholesterol is known as a zoosterol, meaning that it is a sterol isolated from animals (to distinguish those sterols isolated from plants which are called phytosterols). 7-DHC functions in the serum as a cholesterol precursor and is photochemically converted to vitamin D3 in the skin. Therefore 7-DHC functions as provitamin-D3. The presence of 7-DHC in human skin enables humans and other mammals to manufacture vitamin D3 (cholecalciferol) from ultraviolet rays in the sun light, via an intermediate isomer pre-vitamin D3. 7-DHC absorbs UV light most effectively at wavelengths between 290 and 320 nm and, thus, the production of vitamin D3 will occur primarily at those wavelengths (PMID: 9625080). The two most important factors that govern the generation of pre-vitamin D3 are the quantity (intensity) and quality (appropriate wavelength) of the UVB irradiation reaching the 7-dehydrocholesterol deep in the stratum basale and stratum spinosum (PMID: 9625080). 7-DHC is also found in the milk of several mammalian species, including cows (PMID: 10999630; PMID: 225459). It was discovered by Nobel-laureate organic chemist Adolf Windaus. 7-DHC can be produced by animals and plants via different pathways (PMID: 23717318). It is not produced by fungi in significant amounts. 7-DHC is made by some algae and can also be produced by some bacteria. 7-Dehydrocholesterol is a zoosterol (a sterol produced by animals rather than plants). It is a provitamin-D. The presence of this compound in skin enables humans to manufacture vitamin D3 from ultra-violet rays in the sun light, via an intermediate isomer provitamin D3. It is also found in breast milk. [HMDB] D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3. 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3.

   

Okadaic acid

(2R)-3-[(2S,6R,8S,11R)-2-[(E,2R)-4-[(2S,2R,4R,6R,8aR)-4-hydroxy-2-[(1S,3S)-1-hydroxy-3-[(3R,6S)-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl]butyl]-3-methylidenespiro[4a,7,8,8a-tetrahydro-4H-pyrano[3,2-b]pyran-6,5-oxolane]-2-yl]but-3-en-2-yl]-11-hydroxy-4-methyl-1,7-dioxaspiro[5.5]undec-4-en-8-yl]-2-hydroxy-2-methylpropanoic acid

C44H68O13 (804.4659678)


Okadaic acid is found in mollusks. Okadaic acid is found in the marine sponges Halichondria okadai and Halichondria melanodocia and shellfish. It is a metabolite of Prorocentrum lima. It is a diarrhetic shellfish toxin. Okadaic acid is a toxin that accumulates in bivalves and causes diarrhetic shellfish poisoning. The molecular formula of okadaic acid, which is a derivative of a C38 fatty acid, is C44H68O13. The IUPAC name of okadaic acid is (2R)-2-hydroxy-3-{(2S,5R,6R,8S)-5-hydroxy-[(1R,2E)-3-((2R,5R,6S,8R,8aS)-8-hydroxy-6-{(1S,3S)-1-hydroxy-3-[(3R,6S)-3-methyl-1,7-dioxaspiro[5.5]undec-2-yl]butyl}-7-methyleneoctahydro-3H,3H-spiro[furan-2,2-pyrano[3,2-b]pyran]-5-yl)-1-methylprop-2-en-1-yl]-10-methyl-1,7-dioxaspiro[5.5]undec-10-en-2-yl}-2-methylpropanoic acid. Okadaic acid was named from the marine sponge Halichondria okadai, from which okadaic acid was isolated for the first time. It has also been isolated from another marine sponge, H. malanodocia, as a cytotoxin. The real producer of okadaic acid is a marine dinoflagellate D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D002273 - Carcinogens D049990 - Membrane Transport Modulators D004791 - Enzyme Inhibitors D007476 - Ionophores

   

Domoic acid

4-[(2E,4Z)-6-carboxy-6-methylhexa-2,4-dien-2-yl]-3-(carboxymethyl)pyrrolidine-2-carboxylic acid

C15H21NO6 (311.13688060000004)


D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents Isodomoic acid F is found in mollusks. Isodomoic acid F is isolated from mussels. Isolated from mussels. Isodomoic acid F is found in mollusks.

   

24-Methylenecholesterol

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methyl-5-methylideneheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H46O (398.3548466)


24-Methylenecholesterol, also known as chalinasterol or ostreasterol, belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, 24-methylenecholesterol is considered to be a sterol lipid molecule. 24-Methylenecholesterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 24-Methylenecholesterol is involved in the biosynthesis of steroids. 24-Methylenecholesterol is converted from 5-dehydroepisterol by 7-dehydrocholesterol reductase (EC 1.3.1.21). 24-Methylenecholesterol is converted into campesterol by delta24-sterol reductase (EC 1.3.1.72). 24-methylenecholesterol is a 3beta-sterol having the structure of cholesterol with a methylene group at C-24. It has a role as a mouse metabolite. It is a 3beta-sterol and a 3beta-hydroxy-Delta(5)-steroid. It is functionally related to a cholesterol. 24-Methylenecholesterol is a natural product found in Echinometra lucunter, Ulva fasciata, and other organisms with data available. A 3beta-sterol having the structure of cholesterol with a methylene group at C-24. Constituent of clams and oysters 24-Methylenecholesterol (Ostreasterol), a natural marine sterol, stimulates cholesterol acyltransferase in human macrophages. 24-Methylenecholesterol possess anti-aging effects in yeast. 24-methylenecholesterol enhances honey bee longevity and improves nurse bee physiology[1][2][3].

   

Yessotoxin

{34-hydroxy-40-[(3E)-2-hydroxy-5-methylideneocta-3,7-dien-2-yl]-13,25,27,30,35-pentamethyl-39-methylidene-13-[2-(sulfooxy)ethyl]-4,8,12,17,21,26,32,36,41,45,49-undecaoxaundecacyclo[25.22.0.0^{3,25}.0^{5,22}.0^{7,20}.0^{9,18}.0^{11,16}.0^{31,48}.0^{33,46}.0^{35,44}.0^{37,42}]nonatetracontan-14-yl}oxidanesulfonic acid

C55H82O21S2 (1142.4789762)


Yessotoxin is found in mollusks. Toxic constituent of scallops (Patinopecten yessoensis). Toxic constituent of scallops (Patinopecten yessoensis). Yessotoxin is found in mollusks. D009676 - Noxae > D011042 - Poisons > D008978 - Mollusk Venoms D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D011042 - Poisons > D014688 - Venoms

   

Azaspiracid

Azaspiracid-1

C47H71NO12 (841.4976005999999)


D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins

   

Alloxanthin

4-[(3E,5E,7E,9E,11E,13E,15E)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]-3,5,5-trimethylcyclohex-3-en-1-ol

C40H52O2 (564.3967092)


Alloxanthin is found in channel catfish. Alloxanthin is a constituent of many shellfish including the giant scallop (Pecten maximus) and edible mussel (Mytilus edulis). Constituent of many shellfish including the giant scallop (Pecten maximus) and edible mussel (Mytilus edulis). Alloxanthin is found in channel catfish and mollusks.

   

Mytiloxanthin

(2Z,4E,6E,8E,10E,12E,14E,16E)-3-hydroxy-1-(4-hydroxy-1,2,2-trimethylcyclopentyl)-19-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-4,8,13,17-tetramethylnonadeca-2,4,6,8,10,12,14,16-octaen-18-yn-1-one

C40H54O4 (598.4021884)


Mytiloxanthin is found in blue mussel. Mytiloxanthin is isolated from the mussels Mytilus edulis. Isolated from the mussels Mytilus edulis. Mytiloxanthin is found in blue mussel and mollusks.

   

Azaspiracid

(4E)-5-(2-{hydroxy[2-hydroxy-3,5-dimethyl-6-(3-{3,5,10-trimethyl-3,7,12-trioxaspiro[piperidine-2,4-tricyclo[6.3.1.0²,⁶]dodecane]-8-yl}prop-1-en-2-yl)oxan-2-yl]methyl}-6-methyl-2,3,3,3a,6,6,7,7a-octahydrodispiro[furo[3,2-b]pyran-5,2-oxolane-5,2-pyran]-6-yl)pent-4-enoic acid

C47H71NO12 (841.4976005999999)


Azaspiracid is found in mollusks. Azaspiracid is an alkaloid from Mytilus edulis (blue mussel). Shellfish toxin. Alkaloid from Mytilus edulis (blue mussel). Shellfish toxin. Azaspiracid is found in mollusks.

   

1-Palmitoylphosphatidylcholine

(2-{[3-(hexadecanoyloxy)-2-hydroxypropyl phosphonato]oxy}ethyl)trimethylazanium

C24H50NO7P (495.33247200000005)


   

Halocynthiaxanthin

(3S,3R,5R,6S)-7,8-Didehydro-5,6-epoxy-5,6,7,8-tetrahydro-8-oxo-beta,beta-carotene-3,3-diol

C40H54O4 (598.4021884)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids CONE_VOLTAGE is 20 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan.

   

Pectenolone

7,8-Didehydro-3,3-dihydroxy-beta,beta-caroten-4-one

C40H52O3 (580.3916242)


Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE was 20 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan.

   

Astaxanthin

beta,beta-Carotene-4,4-dione, 3,3-dihydroxy-, (3S,3S)-

C40H52O4 (596.3865392)


Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids C308 - Immunotherapeutic Agent > C210 - Immunoadjuvant C2140 - Adjuvant

   
   
   
   

okadaic acid

(2R)-3-[(2S,6R,8S,11R)-2-[(2R)-4-[(2S,2R,4R,4aS,6R,8aR)-4-hydroxy-2-[(1S,3S)-1-hydroxy-3-[(2S,3R,6S)-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl]butyl]-3-methylidenespiro[4a,7,8,8a-tetrahydro-4H-pyrano[3,2-b]pyran-6,5-oxolane]-2-yl]but-3-en-2-yl]-11-hydroxy-4-methyl-1,7-dioxaspiro[5.5]undec-4-en-8-yl]-2-hydroxy-2-methylpropanoic acid

C44H68O13 (804.4659678)


D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D002273 - Carcinogens D049990 - Membrane Transport Modulators D004791 - Enzyme Inhibitors D007476 - Ionophores A polycyclic ether that is produced by several species of dinoflagellates, and is known to accumulate in both marine sponges and shellfish. A polyketide, polyether derivative of a C38 fatty acid, it is one of the primary causes of diarrhetic shellfish poisoning (DSP). It is a potent inhibitor of specific protein phosphatases and is known to have a variety of negative effects on cells.

   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548466)


A cholestanoid consisting of cholestane having a double bond at the 5,6-position as well as a 3beta-hydroxy group. Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

Ergosterol

(3S,9S,10R,13R,14R,17R)-17-[(E,2R,5R)-5,6-dimethylhept-3-en-2-yl]-10,13-dimethyl-2,3,4,9,11,12,14,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H44O (396.3391974)


Indicator of fungal contamination, especies in cereals. Occurs in yeast and fungi. The main fungal steroidand is also found in small amts. in higher plant prods., e.g. palm oil [DFC]. D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects. Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects.

   

β-Carotene

1-(1,2,3,4,5-Pentahydroxypent-1-yl)-1,2,3,4-tetrahydro-beta-carboline-3-carboxylate

C40H56 (536.4381776)


The novel carbohydrate-derived b-carboline, 1-pentahydroxypentyl-1,2,3,4-tetrahydro-b-carboline-3-carboxylic acid, was identified in fruit- and vegetable-derived products such as juices, jams, and tomato sauces. This compound occurred as two diastereoisomers, a cis isomer (the major compound) and a trans isomer, ranging from undetectable amounts to 6.5 ug/g. Grape, tomato, pineapple, and tropical juices exhibited the highest amount of this alkaloid (up to 3.8 mg/L), whereas apple, banana, and peach juices showed very low or nondetectable levels. This tetrahydro-b-carboline was also found in jams (up to 0.45 ug/g), and a relative high amount was present in tomato concentrate (6.5 ug/g) and sauce (up to 1.8 ug/g). This b-carboline occurred in fruit-derived products as a glycoconjugate from a chemical condensation of d-glucose and l-tryptophan that is highly favored at low pH values and high temperature. Production, processing treatments, and storage of fruit juices and jams can then release this b-carboline. Fruit-derived products and other foods containing this compound might be an exogenous dietary source of this glucose-derived tetrahydro-b-carboline.(PMID: 12137498) [HMDB] Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE is 20 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. D - Dermatologicals > D02 - Emollients and protectives > D02B - Protectives against uv-radiation > D02BB - Protectives against uv-radiation for systemic use A - Alimentary tract and metabolism > A11 - Vitamins > A11C - Vitamin a and d, incl. combinations of the two > A11CA - Vitamin a, plain D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE is 10 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan.

   

Domoic acid

(-)-domoic acid

C15H21NO6 (311.13688060000004)


An L-proline derivative that is L-proline substituted by a carboxymethyl group at position 3 and a 6-carboxyhepta-2,4-dien-2-yl group at position 4. It is produced by the diatomic algal Pseudo-nitzschia. It is an analogue of kainic acid and a neurotoxin which causes amnesic shellfish poisoning (ASP). D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents

   

7-Dehydrocholesterol

(3β)-7-Dehydro Cholesterol

C27H44O (384.3391974)


D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3. 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3.

   

Lysophosphatidylcholines, egg

(2-{[3-(hexadecanoyloxy)-2-hydroxypropyl phosphonato]oxy}ethyl)trimethylazanium

C24H50NO7P (495.33247200000005)


   

Alloxanthin

4-[(3E,5E,7E,9E,11E,13E,15E)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]-3,5,5-trimethylcyclohex-3-en-1-ol

C40H52O2 (564.3967092)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan.

   
   

Pectenol A/ (Pectenol)

Pectenol A/ (Pectenol)

C40H54O3 (582.4072734)


   

Amarouciaxanthin B/ Sidnyaxanthin

Amarouciaxanthin B/ Sidnyaxanthin

C40H52O4 (596.3865392)


   

(R,R)-Astaxanthin

(3R,3R)-3,3-Dihydroxy-beta,beta-carotene-4,4-dione

C40H52O4 (596.3865392)


   

2-aminoethanesulfonic acid

2-aminoethanesulfonic acid

C2H7NO3S (125.0146632)


   

Morphine

D-(-)-Morphine

C17H19NO3 (285.13648639999997)


A morphinane alkaloid that is a highly potent opiate analgesic psychoactive drug. Morphine acts directly on the central nervous system (CNS) to relieve pain but has a high potential for addiction, with tolerance and both physical and psychological dependence developing rapidly. Morphine is the most abundant opiate found in Papaver somniferum (the opium poppy). D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist > C1657 - Opiate N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Morphine-6-glucuronide

M-6-G TRIFLUOROACETATE-HYDRATE

C23H27NO9 (461.1685732000001)


D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist > C1657 - Opiate

   

19'-Hexanoyloxyfucoxanthinol

19'-Hexanoyloxyfucoxanthinol

C46H66O7 (730.4808286)


   

(2s,3s,4s)-4-[(2e,4z,6r)-6-carboxy-6-methylhexa-2,4-dien-2-yl]-3-(carboxymethyl)pyrrolidine-2-carboxylic acid

(2s,3s,4s)-4-[(2e,4z,6r)-6-carboxy-6-methylhexa-2,4-dien-2-yl]-3-(carboxymethyl)pyrrolidine-2-carboxylic acid

C15H21NO6 (311.13688060000004)


   

(3as,4r,10as)-6-amino-10,10-dihydroxy-4-[(c-hydroxycarbonimidoyloxy)methyl]-2-imino-1h,3h,3ah,4h,8h,9h-pyrrolo[1,2-c]purin-5-ium-5-olate

(3as,4r,10as)-6-amino-10,10-dihydroxy-4-[(c-hydroxycarbonimidoyloxy)methyl]-2-imino-1h,3h,3ah,4h,8h,9h-pyrrolo[1,2-c]purin-5-ium-5-olate

C10H17N7O5 (315.1291112)


   

1,3,3-trimethyl-2-[(9e,11e,13e,15e,17e)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-1-ene

1,3,3-trimethyl-2-[(9e,11e,13e,15e,17e)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-1-ene

C40H56 (536.4381776)


   

(2,3,5,6,7,15-hexachloropentadec-14-en-4-yl)oxysulfonic acid

(2,3,5,6,7,15-hexachloropentadec-14-en-4-yl)oxysulfonic acid

C15H24Cl6O4S (509.95264040000006)


   

(5z)-5-[(2e,4e)-9-(2,4-dihydroxy-2,6,6-trimethylcyclohexylidene)-7-methylnona-2,4,6,8-tetraen-1-ylidene]-3-(2-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}ethenyl)furan-2-one

(5z)-5-[(2e,4e)-9-(2,4-dihydroxy-2,6,6-trimethylcyclohexylidene)-7-methylnona-2,4,6,8-tetraen-1-ylidene]-3-(2-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}ethenyl)furan-2-one

C34H44O6 (548.3137724000001)


   

2-{2-[(5-{1-[5-(6-{5-[2-(hexadecanoyloxy)-3-hydroxy-4-methyloxan-2-yl]-3-hydroxyoxolan-2-yl}-2,4-dimethylhexa-3,5-dien-1-yl)-5-methyloxolan-2-yl]-5-methyl-2,8-dioxabicyclo[3.2.1]octan-3-yl}-2-methyl-4-oxooxolan-2-yl)(hydroxy)methyl]-1,6-dioxaspiro[4.5]decan-7-yl}propanoic acid

2-{2-[(5-{1-[5-(6-{5-[2-(hexadecanoyloxy)-3-hydroxy-4-methyloxan-2-yl]-3-hydroxyoxolan-2-yl}-2,4-dimethylhexa-3,5-dien-1-yl)-5-methyloxolan-2-yl]-5-methyl-2,8-dioxabicyclo[3.2.1]octan-3-yl}-2-methyl-4-oxooxolan-2-yl)(hydroxy)methyl]-1,6-dioxaspiro[4.5]decan-7-yl}propanoic acid

C63H102O16 (1114.7167492)


   

[(1s,3r,5s,7r,9s,11s,12s,14r,15r,16s,18r,19s,22s,24r,27s,29r,31s,33r,35s,36r,38s,40r,42s,44r)-11,15-dihydroxy-14,19,22,24,36-pentamethyl-12-(sulfooxy)-36-[2-(sulfooxy)ethyl]-4,8,13,17,23,28,32,37,41,45-decaoxadecacyclo[22.21.0.0³,²².0⁵,¹⁸.0⁷,¹⁶.0⁹,¹⁴.0²⁷,⁴⁴.0²⁹,⁴².0³¹,⁴⁰.0³³,³⁸]pentatetracontan-35-yl]oxidanesulfonic acid

[(1s,3r,5s,7r,9s,11s,12s,14r,15r,16s,18r,19s,22s,24r,27s,29r,31s,33r,35s,36r,38s,40r,42s,44r)-11,15-dihydroxy-14,19,22,24,36-pentamethyl-12-(sulfooxy)-36-[2-(sulfooxy)ethyl]-4,8,13,17,23,28,32,37,41,45-decaoxadecacyclo[22.21.0.0³,²².0⁵,¹⁸.0⁷,¹⁶.0⁹,¹⁴.0²⁷,⁴⁴.0²⁹,⁴².0³¹,⁴⁰.0³³,³⁸]pentatetracontan-35-yl]oxidanesulfonic acid

C42H66O24S3 (1050.3105996000002)


   

1-[(9e,11e,13e,15e)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15-octaen-17-yn-1-yl]-2,6,6-trimethylcyclohexane-1,2,4-triol

1-[(9e,11e,13e,15e)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15-octaen-17-yn-1-yl]-2,6,6-trimethylcyclohexane-1,2,4-triol

C40H56O4 (600.4178376)


   

(5s)-5-[(1r,4s,6r,7r,9s,10e,12s,17s,20r,29s,32r)-9,32-dihydroxy-6,10,13,20,32-pentamethyl-27-methylidene-33,34,35-trioxa-22-azahexacyclo[27.3.1.1¹,⁴.1⁴,⁷.0¹²,¹⁷.0¹⁷,²³]pentatriaconta-10,13,22-trien-14-yl]-3-methyloxolan-2-one

(5s)-5-[(1r,4s,6r,7r,9s,10e,12s,17s,20r,29s,32r)-9,32-dihydroxy-6,10,13,20,32-pentamethyl-27-methylidene-33,34,35-trioxa-22-azahexacyclo[27.3.1.1¹,⁴.1⁴,⁷.0¹²,¹⁷.0¹⁷,²³]pentatriaconta-10,13,22-trien-14-yl]-3-methyloxolan-2-one

C42H63NO7 (693.4604288)


   

(5z)-3-[(1e)-2-[(1s,4s,6r)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]ethenyl]-5-[(2e,4e,6e)-9-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-7-methylnona-2,4,6-trien-8-yn-1-ylidene]furan-2-one

(5z)-3-[(1e)-2-[(1s,4s,6r)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]ethenyl]-5-[(2e,4e,6e)-9-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-7-methylnona-2,4,6-trien-8-yn-1-ylidene]furan-2-one

C34H42O5 (530.3032082)


   

(4e,6e,8e,10e,12e,14e)-2-{2-[4-(acetyloxy)-2-hydroxy-2,6,6-trimethylcyclohexylidene]ethenyl}-17-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}-6,11,15-trimethyl-16-oxoheptadeca-2,4,6,8,10,12,14-heptaen-1-yl hexanoate

(4e,6e,8e,10e,12e,14e)-2-{2-[4-(acetyloxy)-2-hydroxy-2,6,6-trimethylcyclohexylidene]ethenyl}-17-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}-6,11,15-trimethyl-16-oxoheptadeca-2,4,6,8,10,12,14-heptaen-1-yl hexanoate

C48H68O8 (772.4913928000001)


   

6-hydroxy-3-[(9e,11e,13e,15e)-18-(4-hydroxy-2,6,6-trimethyl-3-oxocyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]-2,4,4-trimethylcyclohex-2-en-1-one

6-hydroxy-3-[(9e,11e,13e,15e)-18-(4-hydroxy-2,6,6-trimethyl-3-oxocyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]-2,4,4-trimethylcyclohex-2-en-1-one

C40H48O4 (592.3552407999999)


   

2-[(26-{1-[3,14-dimethyl-12-oxo-5-(tetradecanoyloxy)-2,7,11-trioxatricyclo[8.4.0.0³,⁸]tetradec-13-en-6-yl]propan-2-yl}-8-hydroxy-7,20,30,32-tetramethyl-27-oxo-2,6,11,15,21,25,31-heptaoxaheptacyclo[18.13.0.0³,¹⁶.0⁵,¹⁴.0⁷,¹².0²²,³².0²⁴,³⁰]tritriacont-17-en-10-yl)methyl]prop-2-enoic acid

2-[(26-{1-[3,14-dimethyl-12-oxo-5-(tetradecanoyloxy)-2,7,11-trioxatricyclo[8.4.0.0³,⁸]tetradec-13-en-6-yl]propan-2-yl}-8-hydroxy-7,20,30,32-tetramethyl-27-oxo-2,6,11,15,21,25,31-heptaoxaheptacyclo[18.13.0.0³,¹⁶.0⁵,¹⁴.0⁷,¹².0²²,³².0²⁴,³⁰]tritriacont-17-en-10-yl)methyl]prop-2-enoic acid

C64H96O17 (1136.6647166)


   

6-hydroxy-3-[(9e,11e,13e,15e,17e)-18-(4-hydroxy-2,6,6-trimethyl-3-oxocyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-2,4,4-trimethylcyclohex-2-en-1-one

6-hydroxy-3-[(9e,11e,13e,15e,17e)-18-(4-hydroxy-2,6,6-trimethyl-3-oxocyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-2,4,4-trimethylcyclohex-2-en-1-one

C40H52O4 (596.3865392)


   

3-{4-[(2r,3r,6s)-5-hydroxy-3-(hydroxymethyl)-6-(1h-indol-3-yl)-3,6-dihydro-2h-1,4-oxazin-2-yl]phenoxy}propanenitrile

3-{4-[(2r,3r,6s)-5-hydroxy-3-(hydroxymethyl)-6-(1h-indol-3-yl)-3,6-dihydro-2h-1,4-oxazin-2-yl]phenoxy}propanenitrile

C22H21N3O4 (391.15319860000005)


   

(1r)-3,4,5,5-tetramethylcyclohex-3-en-1-ol

(1r)-3,4,5,5-tetramethylcyclohex-3-en-1-ol

C10H18O (154.1357578)


   

6-hydroxy-3-[(9e,11e,13e,15e)-18-(4-hydroxy-2,6,6-trimethyl-3-oxocyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15-octaen-17-yn-1-yl]-2,4,4-trimethylcyclohex-2-en-1-one

6-hydroxy-3-[(9e,11e,13e,15e)-18-(4-hydroxy-2,6,6-trimethyl-3-oxocyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15-octaen-17-yn-1-yl]-2,4,4-trimethylcyclohex-2-en-1-one

C40H50O4 (594.3708899999999)


   

3-hydroxy-4-(18-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}-3-(hydroxymethyl)-7,12,16-trimethyl-17-oxooctadeca-1,3,5,7,9,11,13,15-octaen-1-ylidene)-3,5,5-trimethylcyclohexyl acetate

3-hydroxy-4-(18-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}-3-(hydroxymethyl)-7,12,16-trimethyl-17-oxooctadeca-1,3,5,7,9,11,13,15-octaen-1-ylidene)-3,5,5-trimethylcyclohexyl acetate

C42H58O7 (674.4182318000001)


   

(2r)-2-[(2s,5r,7s)-2-[(s)-[(2r,5r)-5-[(1s,3r,5s)-1-[(2r,5r)-5-[(2r,3e,5e)-6-[(2r,3r,5s)-5-[(2r,3r,4r)-2-(hexadecanoyloxy)-3-hydroxy-4-methyloxan-2-yl]-3-hydroxyoxolan-2-yl]-2,4-dimethylhexa-3,5-dien-1-yl]-5-methyloxolan-2-yl]-5-methyl-2,8-dioxabicyclo[3.2.1]octan-3-yl]-2-methyl-4-oxooxolan-2-yl](hydroxy)methyl]-1,6-dioxaspiro[4.5]decan-7-yl]propanoic acid

(2r)-2-[(2s,5r,7s)-2-[(s)-[(2r,5r)-5-[(1s,3r,5s)-1-[(2r,5r)-5-[(2r,3e,5e)-6-[(2r,3r,5s)-5-[(2r,3r,4r)-2-(hexadecanoyloxy)-3-hydroxy-4-methyloxan-2-yl]-3-hydroxyoxolan-2-yl]-2,4-dimethylhexa-3,5-dien-1-yl]-5-methyloxolan-2-yl]-5-methyl-2,8-dioxabicyclo[3.2.1]octan-3-yl]-2-methyl-4-oxooxolan-2-yl](hydroxy)methyl]-1,6-dioxaspiro[4.5]decan-7-yl]propanoic acid

C63H102O16 (1114.7167492)


   

(2s,5s,6s)-5-(hydroxymethyl)-6-(4-hydroxyphenyl)-2-(1h-indol-3-yl)-5,6-dihydro-2h-1,4-oxazin-3-ol

(2s,5s,6s)-5-(hydroxymethyl)-6-(4-hydroxyphenyl)-2-(1h-indol-3-yl)-5,6-dihydro-2h-1,4-oxazin-3-ol

C19H18N2O4 (338.12665080000005)


   

4-hydroxy-4-[18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyl-2-oxooctadeca-3,5,7,9,11,13,15-heptaen-17-yn-1-yl]-3,3,5-trimethylcyclohexan-1-one

4-hydroxy-4-[18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyl-2-oxooctadeca-3,5,7,9,11,13,15-heptaen-17-yn-1-yl]-3,3,5-trimethylcyclohexan-1-one

C40H54O4 (598.4021884)


   

1-(5,6-dimethylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

1-(5,6-dimethylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C28H44O (396.3391974)


   

6-hydroxy-3-[(3e,5e,7e,9e)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]-2,4,4-trimethylcyclohex-2-en-1-one

6-hydroxy-3-[(3e,5e,7e,9e)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]-2,4,4-trimethylcyclohex-2-en-1-one

C40H50O3 (578.3759749999999)


   

[(2r,3s,4r,5s,6s,7r,14e)-2,3,5,6,7,15-hexachloropentadec-14-en-4-yl]oxysulfonic acid

[(2r,3s,4r,5s,6s,7r,14e)-2,3,5,6,7,15-hexachloropentadec-14-en-4-yl]oxysulfonic acid

C15H24Cl6O4S (509.95264040000006)


   

[(3as,4r,9r)-5,10,10-trihydroxy-2,6-diimino-9-(sulfooxy)-hexahydropyrrolo[1,2-c]purin-4-yl]methoxycarboximidic acid

[(3as,4r,9r)-5,10,10-trihydroxy-2,6-diimino-9-(sulfooxy)-hexahydropyrrolo[1,2-c]purin-4-yl]methoxycarboximidic acid

C10H17N7O9S (411.0808432)


   

(4e,6e,8e,10e,12e,14e)-17-(1-hydroxy-2,2,6-trimethyl-4-oxocyclohexyl)-2-[2-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)ethynyl]-6,11,15-trimethyl-16-oxoheptadeca-2,4,6,8,10,12,14-heptaen-1-yl hexanoate

(4e,6e,8e,10e,12e,14e)-17-(1-hydroxy-2,2,6-trimethyl-4-oxocyclohexyl)-2-[2-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)ethynyl]-6,11,15-trimethyl-16-oxoheptadeca-2,4,6,8,10,12,14-heptaen-1-yl hexanoate

C46H64O6 (712.4702643999999)


   

(4e,6e,8e,10e,12e,14e)-2-[2-(2,4-dihydroxy-2,6,6-trimethylcyclohexylidene)ethenyl]-17-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}-6,11,15-trimethyl-16-oxoheptadeca-2,4,6,8,10,12,14-heptaen-1-yl hexanoate

(4e,6e,8e,10e,12e,14e)-2-[2-(2,4-dihydroxy-2,6,6-trimethylcyclohexylidene)ethenyl]-17-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}-6,11,15-trimethyl-16-oxoheptadeca-2,4,6,8,10,12,14-heptaen-1-yl hexanoate

C46H66O7 (730.4808286)


   
   

[(3as,4r,10as)-5,10,10-trihydroxy-2,6-diimino-hexahydropyrrolo[1,2-c]purin-4-yl]methoxycarboximidic acid

[(3as,4r,10as)-5,10,10-trihydroxy-2,6-diimino-hexahydropyrrolo[1,2-c]purin-4-yl]methoxycarboximidic acid

C10H17N7O5 (315.1291112)


   

(3e,5e,7e,9e,11e,13e,15z)-18-[(2r,4s)-2,4-dihydroxy-2,6,6-trimethylcyclohexylidene]-1-[(1s,4s,6r)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-16-(hydroxymethyl)-3,7,12-trimethyloctadeca-3,5,7,9,11,13,15,17-octaen-2-one

(3e,5e,7e,9e,11e,13e,15z)-18-[(2r,4s)-2,4-dihydroxy-2,6,6-trimethylcyclohexylidene]-1-[(1s,4s,6r)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-16-(hydroxymethyl)-3,7,12-trimethyloctadeca-3,5,7,9,11,13,15,17-octaen-2-one

C40H56O6 (632.4076676)


   

5-[(4-hydroxyphenyl)methyl]-2-(1h-indol-3-yl)-5,6-dihydro-2h-1,4-oxazin-3-ol

5-[(4-hydroxyphenyl)methyl]-2-(1h-indol-3-yl)-5,6-dihydro-2h-1,4-oxazin-3-ol

C19H18N2O3 (322.1317358)


   

(5z)-5-[(2e,4e,6e,8e)-11-[(2r,4s)-2,4-dihydroxy-2,6,6-trimethylcyclohexylidene]-2,9-dimethylundeca-2,4,6,8,10-pentaen-1-ylidene]-3-[(1e)-2-[(1s,4s,6r)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]ethenyl]furan-2-one

(5z)-5-[(2e,4e,6e,8e)-11-[(2r,4s)-2,4-dihydroxy-2,6,6-trimethylcyclohexylidene]-2,9-dimethylundeca-2,4,6,8,10-pentaen-1-ylidene]-3-[(1e)-2-[(1s,4s,6r)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]ethenyl]furan-2-one

C37H48O6 (588.3450708)


   

[(3as,4r,9r,10as)-10,10-dihydroxy-2,6-diimino-9-(sulfooxy)-hexahydro-1h-pyrrolo[1,2-c]purin-4-yl]methoxycarboximidic acid

[(3as,4r,9r,10as)-10,10-dihydroxy-2,6-diimino-9-(sulfooxy)-hexahydro-1h-pyrrolo[1,2-c]purin-4-yl]methoxycarboximidic acid

C10H17N7O8S (395.0859282)


   

(2r,5s,6s)-5-(hydroxymethyl)-6-(4-hydroxyphenyl)-2-(1h-indol-3-yl)-5,6-dihydro-2h-1,4-oxazin-3-ol

(2r,5s,6s)-5-(hydroxymethyl)-6-(4-hydroxyphenyl)-2-(1h-indol-3-yl)-5,6-dihydro-2h-1,4-oxazin-3-ol

C19H18N2O4 (338.12665080000005)


   

4-hydroxy-4-[(3e,5e,7e,9e)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyl-2-oxooctadeca-3,5,7,9,11,13,15-heptaen-17-yn-1-yl]-3,5,5-trimethylcyclohex-2-en-1-one

4-hydroxy-4-[(3e,5e,7e,9e)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyl-2-oxooctadeca-3,5,7,9,11,13,15-heptaen-17-yn-1-yl]-3,5,5-trimethylcyclohex-2-en-1-one

C40H52O4 (596.3865392)


   

(2s)-2-{[(2s)-2-({2-[(2-{[(2s)-2-amino-1-hydroxy-3-(4-hydroxyphenyl)propylidene]amino}-1-hydroxyethylidene)amino]-1-hydroxyethylidene}amino)-1-hydroxy-3-phenylpropylidene]amino}-4-methylpentanoic acid

(2s)-2-{[(2s)-2-({2-[(2-{[(2s)-2-amino-1-hydroxy-3-(4-hydroxyphenyl)propylidene]amino}-1-hydroxyethylidene)amino]-1-hydroxyethylidene}amino)-1-hydroxy-3-phenylpropylidene]amino}-4-methylpentanoic acid

C28H37N5O7 (555.2692852)


   

(4s,6e,10e,12e,14e,16e,18e,20e,22e)-4-hydroxy-25-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-6,7,10,14,19,23-hexamethylpentacosa-6,10,12,14,16,18,20,22-octaen-24-yne-2,9-dione

(4s,6e,10e,12e,14e,16e,18e,20e,22e)-4-hydroxy-25-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-6,7,10,14,19,23-hexamethylpentacosa-6,10,12,14,16,18,20,22-octaen-24-yne-2,9-dione

C40H54O4 (598.4021884)


   

(2r,5s,6s)-5-(hydroxymethyl)-2-(1h-indol-3-yl)-6-(4-propoxyphenyl)-5,6-dihydro-2h-1,4-oxazin-3-ol

(2r,5s,6s)-5-(hydroxymethyl)-2-(1h-indol-3-yl)-6-(4-propoxyphenyl)-5,6-dihydro-2h-1,4-oxazin-3-ol

C22H24N2O4 (380.1735984)


   

(2r)-2-{[(2r)-2-({2-[(2-{[(2s)-2-amino-1-hydroxy-3-(4-hydroxyphenyl)propylidene]amino}-1-hydroxyethylidene)amino]-1-hydroxyethylidene}amino)-1-hydroxy-3-phenylpropylidene]amino}-4-(methylsulfanyl)butanoic acid

(2r)-2-{[(2r)-2-({2-[(2-{[(2s)-2-amino-1-hydroxy-3-(4-hydroxyphenyl)propylidene]amino}-1-hydroxyethylidene)amino]-1-hydroxyethylidene}amino)-1-hydroxy-3-phenylpropylidene]amino}-4-(methylsulfanyl)butanoic acid

C27H35N5O7S (573.225708)


   

4-[(9e,11e,13e,15e)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]-3,5,5-trimethylcyclohex-3-en-1-ol

4-[(9e,11e,13e,15e)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]-3,5,5-trimethylcyclohex-3-en-1-ol

C40H52O2 (564.3967092)


   

2-{[(1r,3s,5r,7s,8s,10r,12r,14s,16r,17z,20s,22r,24s,26r,30r,32s)-26-[(2r)-1-[(1r,3s,5r,6s,8r,10s)-5-(hexadecanoyloxy)-3,14-dimethyl-12-oxo-2,7,11-trioxatricyclo[8.4.0.0³,⁸]tetradec-13-en-6-yl]propan-2-yl]-8-hydroxy-7,20,30,32-tetramethyl-27-oxo-2,6,11,15,21,25,31-heptaoxaheptacyclo[18.13.0.0³,¹⁶.0⁵,¹⁴.0⁷,¹².0²²,³².0²⁴,³⁰]tritriacont-17-en-10-yl]methyl}prop-2-enoic acid

2-{[(1r,3s,5r,7s,8s,10r,12r,14s,16r,17z,20s,22r,24s,26r,30r,32s)-26-[(2r)-1-[(1r,3s,5r,6s,8r,10s)-5-(hexadecanoyloxy)-3,14-dimethyl-12-oxo-2,7,11-trioxatricyclo[8.4.0.0³,⁸]tetradec-13-en-6-yl]propan-2-yl]-8-hydroxy-7,20,30,32-tetramethyl-27-oxo-2,6,11,15,21,25,31-heptaoxaheptacyclo[18.13.0.0³,¹⁶.0⁵,¹⁴.0⁷,¹².0²²,³².0²⁴,³⁰]tritriacont-17-en-10-yl]methyl}prop-2-enoic acid

C66H100O17 (1164.696015)


   

3-hydroxy-4-{9-[4-(2-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}ethenyl)-5-oxofuran-2-ylidene]-3-methylnona-1,3,5,7-tetraen-1-ylidene}-3,5,5-trimethylcyclohexyl acetate

3-hydroxy-4-{9-[4-(2-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}ethenyl)-5-oxofuran-2-ylidene]-3-methylnona-1,3,5,7-tetraen-1-ylidene}-3,5,5-trimethylcyclohexyl acetate

C36H46O7 (590.3243365999999)


   

3-{4-[(2s,3s,6r)-5-hydroxy-3-(hydroxymethyl)-6-(1h-indol-3-yl)-3,6-dihydro-2h-1,4-oxazin-2-yl]phenoxy}propanenitrile

3-{4-[(2s,3s,6r)-5-hydroxy-3-(hydroxymethyl)-6-(1h-indol-3-yl)-3,6-dihydro-2h-1,4-oxazin-2-yl]phenoxy}propanenitrile

C22H21N3O4 (391.15319860000005)


   

4-[(9e,11e,13e,15e)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15-octaen-17-yn-1-yl]-3,5,5-trimethylcyclohex-3-ene-1,2-diol

4-[(9e,11e,13e,15e)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15-octaen-17-yn-1-yl]-3,5,5-trimethylcyclohex-3-ene-1,2-diol

C40H54O3 (582.4072734)


   

(6r)-6-hydroxy-3-[(3e,5e,7e,9e,11e,13e,15e)-18-[(4r)-4-hydroxy-2,6,6-trimethyl-3-oxocyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]-2,4,4-trimethylcyclohex-2-en-1-one

(6r)-6-hydroxy-3-[(3e,5e,7e,9e,11e,13e,15e)-18-[(4r)-4-hydroxy-2,6,6-trimethyl-3-oxocyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]-2,4,4-trimethylcyclohex-2-en-1-one

C40H48O4 (592.3552407999999)


   
   

(5z)-3-(2-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}ethenyl)-5-[(2e,4e)-9-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-7-methylnona-2,4,6-trien-8-yn-1-ylidene]furan-2-one

(5z)-3-(2-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}ethenyl)-5-[(2e,4e)-9-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-7-methylnona-2,4,6-trien-8-yn-1-ylidene]furan-2-one

C34H42O5 (530.3032082)


   

(2s)-2-{[(2s)-2-({2-[(2-{[(2s)-2-amino-1-hydroxy-3-(4-hydroxyphenyl)propylidene]amino}-1-hydroxyethylidene)amino]-1-hydroxyethylidene}amino)-1-hydroxy-3-phenylpropylidene]amino}-4-(methylsulfanyl)butanoic acid

(2s)-2-{[(2s)-2-({2-[(2-{[(2s)-2-amino-1-hydroxy-3-(4-hydroxyphenyl)propylidene]amino}-1-hydroxyethylidene)amino]-1-hydroxyethylidene}amino)-1-hydroxy-3-phenylpropylidene]amino}-4-(methylsulfanyl)butanoic acid

C27H35N5O7S (573.225708)


   

(2s,5s)-5-[(4-hydroxyphenyl)methyl]-2-(1h-indol-3-yl)-5,6-dihydro-2h-1,4-oxazin-3-ol

(2s,5s)-5-[(4-hydroxyphenyl)methyl]-2-(1h-indol-3-yl)-5,6-dihydro-2h-1,4-oxazin-3-ol

C19H18N2O3 (322.1317358)


   

[(3ar,9r,10as)-10,10-dihydroxy-2,6-diimino-9-(sulfooxy)-hexahydro-1h-pyrrolo[1,2-c]purin-4-yl]methoxycarboximidic acid

[(3ar,9r,10as)-10,10-dihydroxy-2,6-diimino-9-(sulfooxy)-hexahydro-1h-pyrrolo[1,2-c]purin-4-yl]methoxycarboximidic acid

C10H17N7O8S (395.0859282)


   

(1r)-4-[(3e,5e,7e,9e,11e,13e,15e,17e)-18-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15,17-octaen-1-yn-1-yl]-3,5,5-trimethylcyclohex-3-en-1-ol

(1r)-4-[(3e,5e,7e,9e,11e,13e,15e,17e)-18-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15,17-octaen-1-yn-1-yl]-3,5,5-trimethylcyclohex-3-en-1-ol

C40H54O2 (566.4123584)


   

[(1r,3s,5r,7s,9r,11s,13r,14s,16r,18s,20r,22s,25r,27s,30r,31r,33s,34r,35r,37s,40s,42r,44s,46r,48s)-34-hydroxy-40-[(2r,3e)-2-hydroxy-5-methylideneocta-3,7-dien-2-yl]-13,25,27,30,35-pentamethyl-39-methylidene-13-[2-(sulfooxy)ethyl]-4,8,12,17,21,26,32,36,41,45,49-undecaoxaundecacyclo[25.22.0.0³,²⁵.0⁵,²².0⁷,²⁰.0⁹,¹⁸.0¹¹,¹⁶.0³¹,⁴⁸.0³³,⁴⁶.0³⁵,⁴⁴.0³⁷,⁴²]nonatetracontan-14-yl]oxidanesulfonic acid

[(1r,3s,5r,7s,9r,11s,13r,14s,16r,18s,20r,22s,25r,27s,30r,31r,33s,34r,35r,37s,40s,42r,44s,46r,48s)-34-hydroxy-40-[(2r,3e)-2-hydroxy-5-methylideneocta-3,7-dien-2-yl]-13,25,27,30,35-pentamethyl-39-methylidene-13-[2-(sulfooxy)ethyl]-4,8,12,17,21,26,32,36,41,45,49-undecaoxaundecacyclo[25.22.0.0³,²⁵.0⁵,²².0⁷,²⁰.0⁹,¹⁸.0¹¹,¹⁶.0³¹,⁴⁸.0³³,⁴⁶.0³⁵,⁴⁴.0³⁷,⁴²]nonatetracontan-14-yl]oxidanesulfonic acid

C55H82O21S2 (1142.4789762)


   

(1s,2s)-4-[(3e,5e,7e,9e,11e,13e,15e)-18-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]-3,5,5-trimethylcyclohex-3-ene-1,2-diol

(1s,2s)-4-[(3e,5e,7e,9e,11e,13e,15e)-18-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]-3,5,5-trimethylcyclohex-3-ene-1,2-diol

C40H52O3 (580.3916242)


   

(1r,3as,3br,9as,9bs,11as)-9a,11a-dimethyl-1-(6-methylhepta-2,4,6-trien-2-yl)-tetradecahydro-1h-cyclopenta[a]phenanthrene

(1r,3as,3br,9as,9bs,11as)-9a,11a-dimethyl-1-(6-methylhepta-2,4,6-trien-2-yl)-tetradecahydro-1h-cyclopenta[a]phenanthrene

C27H42 (366.3286332)


   

(5z)-5-[(2e,4e,6e)-9-[(2r,4s)-2,4-dihydroxy-2,6,6-trimethylcyclohexylidene]-7-methylnona-2,4,6,8-tetraen-1-ylidene]-3-[(1e)-2-[(1s,4s,6r)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]ethenyl]furan-2-one

(5z)-5-[(2e,4e,6e)-9-[(2r,4s)-2,4-dihydroxy-2,6,6-trimethylcyclohexylidene]-7-methylnona-2,4,6,8-tetraen-1-ylidene]-3-[(1e)-2-[(1s,4s,6r)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]ethenyl]furan-2-one

C34H44O6 (548.3137724000001)


   

3-{4-[5-hydroxy-3-(hydroxymethyl)-6-(1h-indol-3-yl)-3,6-dihydro-2h-1,4-oxazin-2-yl]phenoxy}propanenitrile

3-{4-[5-hydroxy-3-(hydroxymethyl)-6-(1h-indol-3-yl)-3,6-dihydro-2h-1,4-oxazin-2-yl]phenoxy}propanenitrile

C22H21N3O4 (391.15319860000005)


   

(5z)-3-[(1e)-2-[(1s,4s,6r)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]ethenyl]-5-[(2e,4e,6e,8e)-11-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-2,9-dimethylundeca-2,4,6,8-tetraen-10-yn-1-ylidene]furan-2-one

(5z)-3-[(1e)-2-[(1s,4s,6r)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]ethenyl]-5-[(2e,4e,6e,8e)-11-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-2,9-dimethylundeca-2,4,6,8-tetraen-10-yn-1-ylidene]furan-2-one

C37H46O5 (570.3345065999999)


   

5-(hydroxymethyl)-6-(4-hydroxyphenyl)-2-(1h-indol-3-yl)-5,6-dihydro-2h-1,4-oxazin-3-ol

5-(hydroxymethyl)-6-(4-hydroxyphenyl)-2-(1h-indol-3-yl)-5,6-dihydro-2h-1,4-oxazin-3-ol

C19H18N2O4 (338.12665080000005)


   

(1r)-3,5,5-trimethyl-4-[(3e,5e,7e,9e,11e,13e,15e,17e)-3,7,12,16-tetramethyl-18-[(1r)-2,6,6-trimethylcyclohex-2-en-1-yl]octadeca-3,5,7,9,11,13,15,17-octaen-1-yn-1-yl]cyclohex-3-en-1-ol

(1r)-3,5,5-trimethyl-4-[(3e,5e,7e,9e,11e,13e,15e,17e)-3,7,12,16-tetramethyl-18-[(1r)-2,6,6-trimethylcyclohex-2-en-1-yl]octadeca-3,5,7,9,11,13,15,17-octaen-1-yn-1-yl]cyclohex-3-en-1-ol

C40H54O (550.4174434)


   

[(3as,4r,9s,10as)-10,10-dihydroxy-2,6-diimino-9-(sulfooxy)-hexahydro-1h-pyrrolo[1,2-c]purin-4-yl]methoxycarboximidic acid

[(3as,4r,9s,10as)-10,10-dihydroxy-2,6-diimino-9-(sulfooxy)-hexahydro-1h-pyrrolo[1,2-c]purin-4-yl]methoxycarboximidic acid

C10H17N7O8S (395.0859282)


   

(4e)-5-[(2r,3as,5r,5'r,6s,6''s,7as)-2-[(s)-hydroxy[(2r,3r,5s,6s)-2-hydroxy-3,5-dimethyl-6-{3-[(1'r,2r,2's,3r,5s,6's,8's,10'r)-3,5,10'-trimethyl-3',7',12'-trioxaspiro[piperidine-2,4'-tricyclo[6.3.1.0²,⁶]dodecan]-8'-yl]prop-1-en-2-yl}oxan-2-yl]methyl]-6-methyl-2,3,3a,5'',6,6'',7,7a-octahydrodispiro[furo[3,2-b]pyran-5,2'-oxolane-5',2''-pyran]-6''-yl]pent-4-enoic acid

(4e)-5-[(2r,3as,5r,5'r,6s,6''s,7as)-2-[(s)-hydroxy[(2r,3r,5s,6s)-2-hydroxy-3,5-dimethyl-6-{3-[(1'r,2r,2's,3r,5s,6's,8's,10'r)-3,5,10'-trimethyl-3',7',12'-trioxaspiro[piperidine-2,4'-tricyclo[6.3.1.0²,⁶]dodecan]-8'-yl]prop-1-en-2-yl}oxan-2-yl]methyl]-6-methyl-2,3,3a,5'',6,6'',7,7a-octahydrodispiro[furo[3,2-b]pyran-5,2'-oxolane-5',2''-pyran]-6''-yl]pent-4-enoic acid

C47H71NO12 (841.4976005999999)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.386145)


   

2-{[(1r,3s,5r,7s,8s,10r,12r,14s,16r,17z,20s,22r,24s,26r,30r,32s)-26-[(2r)-1-[(1r,3s,5r,6s,8r,10s)-3,14-dimethyl-12-oxo-5-(tetradecanoyloxy)-2,7,11-trioxatricyclo[8.4.0.0³,⁸]tetradec-13-en-6-yl]propan-2-yl]-8-hydroxy-7,20,30,32-tetramethyl-27-oxo-2,6,11,15,21,25,31-heptaoxaheptacyclo[18.13.0.0³,¹⁶.0⁵,¹⁴.0⁷,¹².0²²,³².0²⁴,³⁰]tritriacont-17-en-10-yl]methyl}prop-2-enoic acid

2-{[(1r,3s,5r,7s,8s,10r,12r,14s,16r,17z,20s,22r,24s,26r,30r,32s)-26-[(2r)-1-[(1r,3s,5r,6s,8r,10s)-3,14-dimethyl-12-oxo-5-(tetradecanoyloxy)-2,7,11-trioxatricyclo[8.4.0.0³,⁸]tetradec-13-en-6-yl]propan-2-yl]-8-hydroxy-7,20,30,32-tetramethyl-27-oxo-2,6,11,15,21,25,31-heptaoxaheptacyclo[18.13.0.0³,¹⁶.0⁵,¹⁴.0⁷,¹².0²²,³².0²⁴,³⁰]tritriacont-17-en-10-yl]methyl}prop-2-enoic acid

C64H96O17 (1136.6647166)


   

5-(2-{hydroxy[2-hydroxy-3,5-dimethyl-6-(3-{3,5,10'-trimethyl-3',7',12'-trioxaspiro[piperidine-2,4'-tricyclo[6.3.1.0²,⁶]dodecan]-8'-yl}prop-1-en-2-yl)oxan-2-yl]methyl}-6-methyl-2,3,3a,5'',6,6'',7,7a-octahydrodispiro[furo[3,2-b]pyran-5,2'-oxolane-5',2''-pyran]-6''-yl)pent-4-enoic acid

5-(2-{hydroxy[2-hydroxy-3,5-dimethyl-6-(3-{3,5,10'-trimethyl-3',7',12'-trioxaspiro[piperidine-2,4'-tricyclo[6.3.1.0²,⁶]dodecan]-8'-yl}prop-1-en-2-yl)oxan-2-yl]methyl}-6-methyl-2,3,3a,5'',6,6'',7,7a-octahydrodispiro[furo[3,2-b]pyran-5,2'-oxolane-5',2''-pyran]-6''-yl)pent-4-enoic acid

C47H71NO12 (841.4976005999999)


   

(5z)-5-[(2e,4e,6e)-9-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-7-methylnona-2,4,6-trien-8-yn-1-ylidene]-3-[(1e)-2-[(1r,2r,4s)-1,2,4-trihydroxy-2,6,6-trimethylcyclohexyl]ethenyl]furan-2-one

(5z)-5-[(2e,4e,6e)-9-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-7-methylnona-2,4,6-trien-8-yn-1-ylidene]-3-[(1e)-2-[(1r,2r,4s)-1,2,4-trihydroxy-2,6,6-trimethylcyclohexyl]ethenyl]furan-2-one

C34H44O6 (548.3137724000001)


   

(4z)-4-[(3e,5e,7e,9e,11e,13e,15e)-18-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyl-2-oxooctadeca-3,5,7,9,11,13,15-heptaen-17-yn-1-ylidene]-3,5,5-trimethylcyclohex-2-en-1-one

(4z)-4-[(3e,5e,7e,9e,11e,13e,15e)-18-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyl-2-oxooctadeca-3,5,7,9,11,13,15-heptaen-17-yn-1-ylidene]-3,5,5-trimethylcyclohex-2-en-1-one

C40H50O3 (578.3759749999999)


   

(2e,6e,8e)-33-amino-4,10,12,19,22-pentahydroxy-2,6,9,19,31,32-hexamethyl-5,24,29-trimethylidene-15,18,28-trioxotritriaconta-2,6,8-trienoic acid

(2e,6e,8e)-33-amino-4,10,12,19,22-pentahydroxy-2,6,9,19,31,32-hexamethyl-5,24,29-trimethylidene-15,18,28-trioxotritriaconta-2,6,8-trienoic acid

C42H67NO10 (745.4764722)


   

(4r,5r)-4-hydroxy-4-[(3e,5e,7e,9e,11e,13e,15e)-18-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyl-2-oxooctadeca-3,5,7,9,11,13,15-heptaen-17-yn-1-yl]-3,3,5-trimethylcyclohexan-1-one

(4r,5r)-4-hydroxy-4-[(3e,5e,7e,9e,11e,13e,15e)-18-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyl-2-oxooctadeca-3,5,7,9,11,13,15-heptaen-17-yn-1-yl]-3,3,5-trimethylcyclohexan-1-one

C40H54O4 (598.4021884)


   

(4e,6e,8e,10e,12e,14e)-17-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-2,6,11,15-tetramethylheptadeca-2,4,6,8,10,12,14-heptaen-16-ynal

(4e,6e,8e,10e,12e,14e)-17-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-2,6,11,15-tetramethylheptadeca-2,4,6,8,10,12,14-heptaen-16-ynal

C30H38O2 (430.28716479999997)


   

2-[(26-{1-[5-(hexadecanoyloxy)-3,14-dimethyl-12-oxo-2,7,11-trioxatricyclo[8.4.0.0³,⁸]tetradec-13-en-6-yl]propan-2-yl}-8-hydroxy-7,20,30,32-tetramethyl-27-oxo-2,6,11,15,21,25,31-heptaoxaheptacyclo[18.13.0.0³,¹⁶.0⁵,¹⁴.0⁷,¹².0²²,³².0²⁴,³⁰]tritriacont-17-en-10-yl)methyl]prop-2-enoic acid

2-[(26-{1-[5-(hexadecanoyloxy)-3,14-dimethyl-12-oxo-2,7,11-trioxatricyclo[8.4.0.0³,⁸]tetradec-13-en-6-yl]propan-2-yl}-8-hydroxy-7,20,30,32-tetramethyl-27-oxo-2,6,11,15,21,25,31-heptaoxaheptacyclo[18.13.0.0³,¹⁶.0⁵,¹⁴.0⁷,¹².0²²,³².0²⁴,³⁰]tritriacont-17-en-10-yl)methyl]prop-2-enoic acid

C66H100O17 (1164.696015)


   

2-{[2-({2-[(2-{[2-amino-1-hydroxy-3-(4-hydroxyphenyl)propylidene]amino}-1-hydroxyethylidene)amino]-1-hydroxyethylidene}amino)-1-hydroxy-3-phenylpropylidene]amino}-4-methylpentanoic acid

2-{[2-({2-[(2-{[2-amino-1-hydroxy-3-(4-hydroxyphenyl)propylidene]amino}-1-hydroxyethylidene)amino]-1-hydroxyethylidene}amino)-1-hydroxy-3-phenylpropylidene]amino}-4-methylpentanoic acid

C28H37N5O7 (555.2692852)


   

(1s,3r)-3-hydroxy-4-[(3e,5e,7e)-9-[(2z)-4-[(1e)-2-[(1s,4s,6r)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]ethenyl]-5-oxofuran-2-ylidene]-3-methylnona-1,3,5,7-tetraen-1-ylidene]-3,5,5-trimethylcyclohexyl acetate

(1s,3r)-3-hydroxy-4-[(3e,5e,7e)-9-[(2z)-4-[(1e)-2-[(1s,4s,6r)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]ethenyl]-5-oxofuran-2-ylidene]-3-methylnona-1,3,5,7-tetraen-1-ylidene]-3,5,5-trimethylcyclohexyl acetate

C36H46O7 (590.3243365999999)


   

[(1r,3s,5r,7s,9r,11s,13r,14s,16r,18s,20r,22s,25r,27s,30s,31r,33s,34r,35r,37s,40s,42r,44s,46r,48s)-34-hydroxy-40-[(2r,3e)-2-hydroxy-5-methylideneocta-3,7-dien-2-yl]-13,25,27,30,35-pentamethyl-39-methylidene-13-[3-(sulfooxy)propyl]-4,8,12,17,21,26,32,36,41,45,49-undecaoxaundecacyclo[25.22.0.0³,²⁵.0⁵,²².0⁷,²⁰.0⁹,¹⁸.0¹¹,¹⁶.0³¹,⁴⁸.0³³,⁴⁶.0³⁵,⁴⁴.0³⁷,⁴²]nonatetracontan-14-yl]oxidanesulfonic acid

[(1r,3s,5r,7s,9r,11s,13r,14s,16r,18s,20r,22s,25r,27s,30s,31r,33s,34r,35r,37s,40s,42r,44s,46r,48s)-34-hydroxy-40-[(2r,3e)-2-hydroxy-5-methylideneocta-3,7-dien-2-yl]-13,25,27,30,35-pentamethyl-39-methylidene-13-[3-(sulfooxy)propyl]-4,8,12,17,21,26,32,36,41,45,49-undecaoxaundecacyclo[25.22.0.0³,²⁵.0⁵,²².0⁷,²⁰.0⁹,¹⁸.0¹¹,¹⁶.0³¹,⁴⁸.0³³,⁴⁶.0³⁵,⁴⁴.0³⁷,⁴²]nonatetracontan-14-yl]oxidanesulfonic acid

C56H84O21S2 (1156.4946254000001)


   

4-[(3e,5e,7e,9e)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyl-2-oxooctadeca-3,5,7,9,11,13,15-heptaen-17-yn-1-ylidene]-3,5,5-trimethylcyclohex-2-en-1-one

4-[(3e,5e,7e,9e)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyl-2-oxooctadeca-3,5,7,9,11,13,15-heptaen-17-yn-1-ylidene]-3,5,5-trimethylcyclohex-2-en-1-one

C40H50O3 (578.3759749999999)


   

(2z,4e,6e,8e,10e,12e,14e)-17-[(1r,6r)-1-hydroxy-2,2,6-trimethyl-4-oxocyclohexyl]-2-{2-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]ethynyl}-6,11,15-trimethyl-16-oxoheptadeca-2,4,6,8,10,12,14-heptaen-1-yl hexanoate

(2z,4e,6e,8e,10e,12e,14e)-17-[(1r,6r)-1-hydroxy-2,2,6-trimethyl-4-oxocyclohexyl]-2-{2-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]ethynyl}-6,11,15-trimethyl-16-oxoheptadeca-2,4,6,8,10,12,14-heptaen-1-yl hexanoate

C46H64O6 (712.4702643999999)


   

3,5,5-trimethyl-4-[(3e,5e,7e,9e)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-2-en-1-yl)octadeca-3,5,7,9,11,13,15,17-octaen-1-yn-1-yl]cyclohex-3-en-1-ol

3,5,5-trimethyl-4-[(3e,5e,7e,9e)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-2-en-1-yl)octadeca-3,5,7,9,11,13,15,17-octaen-1-yn-1-yl]cyclohex-3-en-1-ol

C40H54O (550.4174434)


   

(1s,3r)-3-hydroxy-4-[(3z,5e,7e,9e,11e,13e,15e)-18-[(1s,4s,6r)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3-(hydroxymethyl)-7,12,16-trimethyl-17-oxooctadeca-1,3,5,7,9,11,13,15-octaen-1-ylidene]-3,5,5-trimethylcyclohexyl acetate

(1s,3r)-3-hydroxy-4-[(3z,5e,7e,9e,11e,13e,15e)-18-[(1s,4s,6r)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3-(hydroxymethyl)-7,12,16-trimethyl-17-oxooctadeca-1,3,5,7,9,11,13,15-octaen-1-ylidene]-3,5,5-trimethylcyclohexyl acetate

C42H58O7 (674.4182318000001)


   

[(1r,3s,5r,7s,9r,11s,13r,14r,16s,18r,20s,22r,25s,27s,30s,31r,33r,34s,35r,37r,40s,42r,44s,46s,48r)-40-[(2s,3z)-2,6-dihydroxy-5-methylideneocta-3,7-dien-2-yl]-34-hydroxy-13,25,27,30,35-pentamethyl-39-methylidene-13-[2-(sulfooxy)ethyl]-4,8,12,17,21,26,32,36,41,45,49-undecaoxaundecacyclo[25.22.0.0³,²⁵.0⁵,²².0⁷,²⁰.0⁹,¹⁸.0¹¹,¹⁶.0³¹,⁴⁸.0³³,⁴⁶.0³⁵,⁴⁴.0³⁷,⁴²]nonatetracontan-14-yl]oxidanesulfonic acid

[(1r,3s,5r,7s,9r,11s,13r,14r,16s,18r,20s,22r,25s,27s,30s,31r,33r,34s,35r,37r,40s,42r,44s,46s,48r)-40-[(2s,3z)-2,6-dihydroxy-5-methylideneocta-3,7-dien-2-yl]-34-hydroxy-13,25,27,30,35-pentamethyl-39-methylidene-13-[2-(sulfooxy)ethyl]-4,8,12,17,21,26,32,36,41,45,49-undecaoxaundecacyclo[25.22.0.0³,²⁵.0⁵,²².0⁷,²⁰.0⁹,¹⁸.0¹¹,¹⁶.0³¹,⁴⁸.0³³,⁴⁶.0³⁵,⁴⁴.0³⁷,⁴²]nonatetracontan-14-yl]oxidanesulfonic acid

C55H82O22S2 (1158.4738912)


   

(6r)-6-hydroxy-3-[(3e,5e,7e,9e,11e,13e,15e,17e)-18-[(4r)-4-hydroxy-2,6,6-trimethyl-3-oxocyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15,17-octaen-1-yn-1-yl]-2,4,4-trimethylcyclohex-2-en-1-one

(6r)-6-hydroxy-3-[(3e,5e,7e,9e,11e,13e,15e,17e)-18-[(4r)-4-hydroxy-2,6,6-trimethyl-3-oxocyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15,17-octaen-1-yn-1-yl]-2,4,4-trimethylcyclohex-2-en-1-one

C40H50O4 (594.3708899999999)


   

(3e,5e,7e,9e)-1-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-17-yn-2-one

(3e,5e,7e,9e)-1-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-17-yn-2-one

C40H54O4 (598.4021884)


   

(2e,4e,6e,8e,10e,12e,14e)-17-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-2,6,11,15-tetramethylheptadeca-2,4,6,8,10,12,14-heptaen-16-ynal

(2e,4e,6e,8e,10e,12e,14e)-17-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-2,6,11,15-tetramethylheptadeca-2,4,6,8,10,12,14-heptaen-16-ynal

C30H38O2 (430.28716479999997)


   

(1r,2r,4s)-1-[(1e,3e,5e,7e,9e,11e,13e,15e)-18-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15-octaen-17-yn-1-yl]-2,6,6-trimethylcyclohexane-1,2,4-triol

(1r,2r,4s)-1-[(1e,3e,5e,7e,9e,11e,13e,15e)-18-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15-octaen-17-yn-1-yl]-2,6,6-trimethylcyclohexane-1,2,4-triol

C40H56O4 (600.4178376)


   

(5z)-5-[(2e,4e)-9-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-7-methylnona-2,4,6-trien-8-yn-1-ylidene]-3-[2-(1,2,4-trihydroxy-2,6,6-trimethylcyclohexyl)ethenyl]furan-2-one

(5z)-5-[(2e,4e)-9-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-7-methylnona-2,4,6-trien-8-yn-1-ylidene]-3-[2-(1,2,4-trihydroxy-2,6,6-trimethylcyclohexyl)ethenyl]furan-2-one

C34H44O6 (548.3137724000001)


   

(9e,11e,13e,15z)-18-(2,4-dihydroxy-2,6,6-trimethylcyclohexylidene)-1-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}-16-(hydroxymethyl)-3,7,12-trimethyloctadeca-3,5,7,9,11,13,15,17-octaen-2-one

(9e,11e,13e,15z)-18-(2,4-dihydroxy-2,6,6-trimethylcyclohexylidene)-1-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}-16-(hydroxymethyl)-3,7,12-trimethyloctadeca-3,5,7,9,11,13,15,17-octaen-2-one

C40H56O6 (632.4076676)


   

(5z)-5-[(2e,4e,6e,8e)-11-[(4s)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-2,9-dimethylundeca-2,4,6,8-tetraen-10-yn-1-ylidene]-3-[(1e)-2-[(1r,2r,4s)-1,2,4-trihydroxy-2,6,6-trimethylcyclohexyl]ethenyl]furan-2-one

(5z)-5-[(2e,4e,6e,8e)-11-[(4s)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-2,9-dimethylundeca-2,4,6,8-tetraen-10-yn-1-ylidene]-3-[(1e)-2-[(1r,2r,4s)-1,2,4-trihydroxy-2,6,6-trimethylcyclohexyl]ethenyl]furan-2-one

C37H48O6 (588.3450708)


   

(2r)-3-[(2s,5r,6r,8s)-8-[(2r,3e)-4-[(2r,4'ar,5r,6's,8'r,8'as)-8'-hydroxy-6'-[(1s,3s)-1-hydroxy-3-[(2s,3r,6r)-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl]butyl]-7'-methylidene-hexahydrospiro[oxolane-2,2'-pyrano[3,2-b]pyran]-5-yl]but-3-en-2-yl]-5-hydroxy-10-methyl-1,7-dioxaspiro[5.5]undec-10-en-2-yl]-2-hydroxy-2-methylpropanoic acid

(2r)-3-[(2s,5r,6r,8s)-8-[(2r,3e)-4-[(2r,4'ar,5r,6's,8'r,8'as)-8'-hydroxy-6'-[(1s,3s)-1-hydroxy-3-[(2s,3r,6r)-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl]butyl]-7'-methylidene-hexahydrospiro[oxolane-2,2'-pyrano[3,2-b]pyran]-5-yl]but-3-en-2-yl]-5-hydroxy-10-methyl-1,7-dioxaspiro[5.5]undec-10-en-2-yl]-2-hydroxy-2-methylpropanoic acid

C44H68O13 (804.4659678)


   

(2s,3s,4s)-4-[(2z,4z,6r)-6-carboxy-6-methylhexa-2,4-dien-2-yl]-3-(carboxymethyl)pyrrolidine-2-carboxylic acid

(2s,3s,4s)-4-[(2z,4z,6r)-6-carboxy-6-methylhexa-2,4-dien-2-yl]-3-(carboxymethyl)pyrrolidine-2-carboxylic acid

C15H21NO6 (311.13688060000004)


   

(3e,5e,7e,9e,11e,13e,15e)-1-[(1s,4s,6r)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-17-yn-2-one

(3e,5e,7e,9e,11e,13e,15e)-1-[(1s,4s,6r)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-17-yn-2-one

C40H54O4 (598.4021884)


   

(2z,4e,6e,8e,10e)-3-hydroxy-1-(4-hydroxy-1,2,2-trimethylcyclopentyl)-19-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-4,8,13,17-tetramethylnonadeca-2,4,6,8,10,12,14,16-octaen-18-yn-1-one

(2z,4e,6e,8e,10e)-3-hydroxy-1-(4-hydroxy-1,2,2-trimethylcyclopentyl)-19-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-4,8,13,17-tetramethylnonadeca-2,4,6,8,10,12,14,16-octaen-18-yn-1-one

C40H54O4 (598.4021884)


   

(2z,4e,6e,8e,10e,12e,14e,16z)-3-hydroxy-1-[(1r,4s)-4-hydroxy-1,2,2-trimethylcyclopentyl]-19-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-17-(hydroxymethyl)-4,8,13-trimethylnonadeca-2,4,6,8,10,12,14,16-octaen-18-yn-1-one

(2z,4e,6e,8e,10e,12e,14e,16z)-3-hydroxy-1-[(1r,4s)-4-hydroxy-1,2,2-trimethylcyclopentyl]-19-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-17-(hydroxymethyl)-4,8,13-trimethylnonadeca-2,4,6,8,10,12,14,16-octaen-18-yn-1-one

C40H54O5 (614.3971034)


   

(1s,2r)-4-[(3e,5e,7e,9e,11e,13e,15e)-18-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]-3,5,5-trimethylcyclohex-3-ene-1,2-diol

(1s,2r)-4-[(3e,5e,7e,9e,11e,13e,15e)-18-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]-3,5,5-trimethylcyclohex-3-ene-1,2-diol

C40H52O3 (580.3916242)