NCBI Taxonomy: 179863

Dictyochloris fragrans (ncbi_taxid: 179863)

found 14 associated metabolites at species taxonomy rank level.

Ancestor: Dictyochloris

Child Taxonomies: none taxonomy data.

PG(16:0/18:2(9Z,12Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-(hexadecanoyloxy)-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphinic acid

C40H75O10P (746.509758)


PG(16:0/18:2(9Z,12Z)) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(16:0/18:2(9Z,12Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of linoleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the linoleic acid moiety is derived from seed oils. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PGs have a net charge of -1 at physiological pH and are found in high concentration in mitochondrial membranes and as components of pulmonary surfactant. PG also serves as a precursor for the synthesis of cardiolipin. PG is synthesized from CDP-diacylglycerol and glycerol-3-phosphate. PG(16:0/18:2(9Z,12Z)) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(16:0/18:2(9Z,12Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of linoleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the linoleic acid moiety is derived from seed oils. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases.

   

1,2-Di-O-palmitoyl-3-O-(6-sulfoquinovopyranosyl)glycerol

{6-[2,3-bis(hexadecanoyloxy)propoxy]-3,4,5-trihydroxyoxan-2-yl}methanesulfonic acid

C41H78O12S (794.5213708)


   

2,3-dihydroxypropoxy(3-(hexadecanoyloxy)-2-(octadeca-9,12-dienoyloxy)propoxy)phosphinic acid

2,3-dihydroxypropoxy(3-(hexadecanoyloxy)-2-(octadeca-9,12-dienoyloxy)propoxy)phosphinic acid

C40H75O10P (746.509758)


   

[(2s,3s,4s,5r,6s)-6-[(2s)-2,3-bis(hexadecanoyloxy)propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2s,3s,4s,5r,6s)-6-[(2s)-2,3-bis(hexadecanoyloxy)propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C41H78O12S (794.5213708)


   

2,3-dihydroxypropoxy(3-(hexadecanoyloxy)-2-[(9e,12e)-octadeca-9,12-dienoyloxy]propoxy)phosphinic acid

2,3-dihydroxypropoxy(3-(hexadecanoyloxy)-2-[(9e,12e)-octadeca-9,12-dienoyloxy]propoxy)phosphinic acid

C40H75O10P (746.509758)


   

(2r)-2,3-dihydroxypropoxy((2r)-3-(hexadecanoyloxy)-2-[(9z,12z)-octadeca-9,12-dienoyloxy]propoxy)phosphinic acid

(2r)-2,3-dihydroxypropoxy((2r)-3-(hexadecanoyloxy)-2-[(9z,12z)-octadeca-9,12-dienoyloxy]propoxy)phosphinic acid

C40H75O10P (746.509758)


   

[(2s,3s,4s,5r,6s)-6-[2,3-bis(hexadecanoyloxy)propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2s,3s,4s,5r,6s)-6-[2,3-bis(hexadecanoyloxy)propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C41H78O12S (794.5213708)