Gene Association: ENOPH1
UniProt Search:
ENOPH1 (PROTEIN_CODING)
Function Description: enolase-phosphatase 1
found 2 associated metabolites with current gene based on the text mining result from the pubmed database.
5-(Methylthio)-2,3-dioxopentyl phosphate
5-(Methylthio)-2,3-dioxopentyl phosphate, also known as 1-phospho-2,3-diketo-5-S-methylthiopentane or 2,3-diketo-5-methylthiopentyl-1-phosphate (DK-MTP-1-P), belongs to the class of organic compounds known as monoalkyl phosphates. These are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. 5-(Methylthio)-2,3-dioxopentyl phosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 5-(Methylthio)-2,3-dioxopentyl phosphate exists in all eukaryotes, ranging from yeast to humans. 5-(Methylthio)-2,3-dioxopentyl phosphate is a metabolite involved in the cysteine and methionine metabolism pathway. It is a substrate for both E1 enolase-phosphatase and methylthioribulose-1-phosphate dehydratase. Outside of the human body, 5-(methylthio)-2,3-dioxopentyl phosphate can be found in a number of food items such as lime, pineapple, spearmint, and yautia. This makes 5-(methylthio)-2,3-dioxopentyl phosphate a potential biomarker for the consumption of these food products. 5-(methylthio)-2,3-dioxopentyl phosphate, also known as 1-phospho-2,3-diketo-5-S-methylthiopentane or 2,3-diketo-5-methylthio-1-phosphopentane, is a member of the class of compounds known as monoalkyl phosphates. Monoalkyl phosphates are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. 5-(methylthio)-2,3-dioxopentyl phosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 5-(methylthio)-2,3-dioxopentyl phosphate can be found in a number of food items such as narrowleaf cattail, kumquat, ginseng, and gooseberry, which makes 5-(methylthio)-2,3-dioxopentyl phosphate a potential biomarker for the consumption of these food products. 5-(methylthio)-2,3-dioxopentyl phosphate exists in all eukaryotes, ranging from yeast to humans.