Exact Mass: 990.5035338

Exact Mass Matches: 990.5035338

Found 15 metabolites which its exact mass value is equals to given mass value 990.5035338, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

PIP(16:0/PGF1alpha)

{[(1S,6R,15S,16S,18R,19S,20R,21R,22R,23S,24R)-6-[(hexadecanoyloxy)methyl]-3,16,18,20,22,23,24-heptahydroxy-19-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,8-dioxo-2,4,7-trioxa-3lambda5-phosphabicyclo[13.6.3]tetracosan-21-yl]oxy}phosphonic acid

C45H84O19P2 (990.5081774000001)


PIP(16:0/PGF1alpha) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(16:0/PGF1alpha), in particular, consists of one chain of hexadecanoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(PGF1alpha/16:0)

{[(1S,6R,16S,17S,19R,20S,21R,22R,23R,24S,25R)-6-(hexadecanoyloxy)-3,17,19,21,23,24,25-heptahydroxy-20-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,9-dioxo-2,4,8-trioxa-3lambda5-phosphabicyclo[14.6.3]pentacosan-22-yl]oxy}phosphonic acid

C45H84O19P2 (990.5081774000001)


PIP(PGF1alpha/16:0) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(PGF1alpha/16:0), in particular, consists of one chain of Prostaglandin F1alpha at the C-1 position and one chain of hexadecanoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/LTE4)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-{[(2R)-1-({[(2S)-2-amino-2-carboxyethoxy](hydroxy)phosphoryl}oxy)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]propan-2-yl]oxy}-3-oxopropyl]sulfanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C51H79N2O13PS (990.5040214)


PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/LTE4) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/LTE4), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(LTE4/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-[(2R)-3-({[(2S)-2-amino-2-carboxyethoxy](hydroxy)phosphoryl}oxy)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]propoxy]-3-oxopropyl]sulfanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C51H79N2O13PS (990.5040214)


PS(LTE4/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(LTE4/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one Leukotriene E4 at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   
   

kempopeptin A

kempopeptin A

C50H70N8O13 (990.506209)


A 19-membered cyclodepsipeptide isolated from Floridian marine cyanobacterium Lyngbya sp. It exhibits inhibitory activity towards the enzymes elastase and chymotrypsin.

   

3-O-beta-D-glucopyranosyl-(1->6)-beta-D-glucopyranosyl-2beta,3beta,6beta,23-tetrahydroxyolean-12-en-28-oic acid 28-O-beta-D-glucopyranoside

3-O-beta-D-glucopyranosyl-(1->6)-beta-D-glucopyranosyl-2beta,3beta,6beta,23-tetrahydroxyolean-12-en-28-oic acid 28-O-beta-D-glucopyranoside

C48H78O21 (990.5035338)


   

2alpha,3beta,19beta,23-tetrahydroxyolean-12-en-28-oic acid 3-O-beta-D-galactopyranosyl-(1->3)-beta-D-glucopyranoside-28-O-beta-D-glucopyranoside

2alpha,3beta,19beta,23-tetrahydroxyolean-12-en-28-oic acid 3-O-beta-D-galactopyranosyl-(1->3)-beta-D-glucopyranoside-28-O-beta-D-glucopyranoside

C48H78O21 (990.5035338)


   

12-O-deacylmetaplexigenin 3-O-beta-D-glucopiranosyl-(1->4)-beta-D-thevetopyranosyl-(1->4)-beta-D-oleandropyranosyl-(1->4)-beta-D-cymaropyranose|verticilloside H

12-O-deacylmetaplexigenin 3-O-beta-D-glucopiranosyl-(1->4)-beta-D-thevetopyranosyl-(1->4)-beta-D-oleandropyranosyl-(1->4)-beta-D-cymaropyranose|verticilloside H

C48H78O21 (990.5035338)


   
   
   

PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/LTE4)

PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/LTE4)

C51H79N2O13PS (990.5040214)


   

PS(LTE4/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

PS(LTE4/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

C51H79N2O13PS (990.5040214)