Exact Mass: 966.4271682

Exact Mass Matches: 966.4271682

Found 23 metabolites which its exact mass value is equals to given mass value 966.4271682, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

Rebaudioside A

(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1R,4S,5R,9S,10R,13S)-13-{[(2S,3R,4S,5R,6R)-5-hydroxy-6-(hydroxymethyl)-3,4-bis({[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})oxan-2-yl]oxy}-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0^{1,10}.0^{4,9}]hexadecane-5-carboxylate

C44H70O23 (966.4307670000001)


Rebaudioside A is a rebaudioside that is rubusoside in which the hydroxy groups at positions 3 and 4 of the beta-D-glucopyranosyloxy group at the 13alpha position have both been converted to the corresponding beta-D-glucopyranoside. It has a role as a sweetening agent. It is a beta-D-glucoside, a tetracyclic diterpenoid and a rebaudioside. It is functionally related to a rubusoside and a beta-D-Glcp-(1->2)-[beta-D-Glcp-(1->3)]-beta-D-Glcp. Rebaudioside A is under investigation in clinical trial NCT03510624 (Acute Effect of Rebaudioside A on Glucose Excursion During an Oral Glucose Tolerance Test in Type 2 Diabetes Mellitus). Rebaudioside A is a natural product found in Stevia rebaudiana and Bos taurus with data available. See also: Stevia rebaudiuna Leaf (part of). Rebaudioside A belongs to the class of organic compounds known as steviol glycosides. These are prenol lipids containing a carbohydrate moiety glycosidically linked to a steviol (a diterpenoid based on a 13-hydroxykaur-16-en-18-oic acid) moiety. Rebaudioside A is an extremely weak basic (essentially neutral) compound (based on its pKa). Rebaudioside A is a constituent of Stevia rebaudiana (stevia). Rebaudioside B, D, and E may also be present in minute quantities; however, it is suspected that rebaudioside B is a byproduct of the isolation technique. The two major compounds stevioside and rebaudioside, primarily responsible for the sweet taste of stevia leaves, were first isolated by two French chemists in 1931. A rebaudioside that is rubusoside in which the hydroxy groups at positions 3 and 4 of the beta-D-glucopyranosyloxy group at the 13alpha position have both been converted to the corresponding beta-D-glucopyranoside. Constituent of Stevia rebaudiana (stevia) Rebaudioside A is a steviol glycoside and α-glucosidase inhibitor with an IC50 of 35.01 ug/mL. Rebaudioside A is a steviol glycoside and α-glucosidase inhibitor with an IC50 of 35.01 ug/mL.

   

Rebaudioside E

4,5-Dihydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl 13-{[4,5-dihydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

C44H70O23 (966.4307670000001)


Rebaudioside E is a constituent of Stevia rebaudiana (stevia) Constituent of Stevia rebaudiana (stevia)

   

PIP2(16:0/16:2(9Z,12Z))

{[(4S,6S)-4-({[(2R)-2-[(9Z,12Z)-hexadeca-9,12-dienoyloxy]-3-(hexadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2,3,5-trihydroxy-6-(phosphonooxy)cyclohexyl]oxy}phosphonic acid

C41H77O19P3 (966.4271682)


PIP2(16:0/16:2(9Z,12Z)) is a phosphatidylinositol bisphosphate. Phosphatidylinositol bisphosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a bisphosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol bisphosphates are generated from phosphatidylinositols which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols bisphosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP2(16:0/16:2(9Z,12Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of (9Z,12Z-hexadecadienoate) at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the (9Z,12Z-hexadecadienoate) moiety is derived from fish oils. The most important phosphatidylinositol bisphosphate in both quantitative and biological terms is phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP2(16:1(9Z)/16:1(9Z))

{[(4S,6S)-4-({[(2R)-2,3-bis[(9Z)-hexadec-9-enoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2,3,5-trihydroxy-6-(phosphonooxy)cyclohexyl]oxy}phosphonic acid

C41H77O19P3 (966.4271682)


PIP2(16:1(9Z)/16:1(9Z)) is a phosphatidylinositol bisphosphate. Phosphatidylinositol bisphosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a bisphosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol bisphosphates are generated from phosphatidylinositols which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols bisphosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP2(16:1(9Z)/16:1(9Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. The most important phosphatidylinositol bisphosphate in both quantitative and biological terms is phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP2(16:1(9Z)/16:1(9Z)) is a phosphatidylinositol bisphosphate. Phosphatidylinositol bisphosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a bisphosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol bisphosphates are generated from phosphatidylinositols which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols bisphosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP2(16:1(9Z)/16:1(9Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. The most important phosphatidylinositol bisphosphate in both quantitative and biological terms is phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP2(16:2(9Z,12Z)/16:0)

{[(4S,6S)-4-({[(2R)-3-[(9Z,12Z)-hexadeca-9,12-dienoyloxy]-2-(hexadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2,3,5-trihydroxy-6-(phosphonooxy)cyclohexyl]oxy}phosphonic acid

C41H77O19P3 (966.4271682)


PIP2(16:2(9Z,12Z)/16:0) is a phosphatidylinositol bisphosphate. Phosphatidylinositol bisphosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a bisphosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol bisphosphates are generated from phosphatidylinositols which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols bisphosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP2(16:2(9Z,12Z)/16:0), in particular, consists of one chain of (9Z,12Z-hexadecadienoate) at the C-1 position and one chain of palmitic acid at the C-2 position. The (9Z,12Z-hexadecadienoate) moiety is derived from fish oils, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. The most important phosphatidylinositol bisphosphate in both quantitative and biological terms is phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   
   
   

Rebaudioside A

Rebaudioside A

C44H70O23 (966.4307670000001)


[Chemical] Source; leaves of Stevia rebaudiana Morita and Stevia rebaudiana Bertoni Rebaudioside A is a steviol glycoside and α-glucosidase inhibitor with an IC50 of 35.01 ug/mL. Rebaudioside A is a steviol glycoside and α-glucosidase inhibitor with an IC50 of 35.01 ug/mL.

   

Rebaudioside E

4,5-dihydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl 13-{[4,5-dihydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0^{1,10}.0^{4,9}]hexadecane-5-carboxylate

C44H70O23 (966.4307670000001)


Rebaudioside E is a rebaudioside that is stevioside in which the hydroxy group at position 2 of the glucosyl ester moiety has been converted into the corresponding beta-D-glucoside. It is a tetracyclic diterpenoid, a rebaudioside and a sophoroside. It is functionally related to a stevioside. Rebaudioside E is a natural product found in Stevia rebaudiana with data available. See also: Stevia rebaudiuna Leaf (part of). A rebaudioside that is stevioside in which the hydroxy group at position 2 of the glucosyl ester moiety has been converted into the corresponding beta-D-glucoside. [Chemical] Source; leaves of Stevia rebaudiana Morita and Stevia rebaudiana Bertoni

   
   

PIP2(32:2)

1-(9Z,12Z-Hexadecadienoate)-2-hexadecanoyl-sn-glycero-3-phospho-(1-myo-inositol-3,4-bisphosphate)

C41H77O19P3 (966.4271682)


   

Cys-Asp-Pro-Gly-Tyr-Ile-Gly-Ser-Arg

Cys-Asp-Pro-Gly-Tyr-Ile-Gly-Ser-Arg

C40H62N12O14S (966.4228952)


   

H-Cys-Asp-Pro-Gly-Tyr-Ile-Gly-Ser-Arg-OH trifluoroacetate salt

H-Cys-Asp-Pro-Gly-Tyr-Ile-Gly-Ser-Arg-OH trifluoroacetate salt

C40H62N12O14S (966.4228952)


   

[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (1R,4S,5R,9S,10R,13S)-13-[(2S,3R,4S,5R,6R)-5-hydroxy-6-(hydroxymethyl)-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-[(2R,3S,4R,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.01,10.04,9]hexadecane-5-carboxylate

[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (1R,4S,5R,9S,10R,13S)-13-[(2S,3R,4S,5R,6R)-5-hydroxy-6-(hydroxymethyl)-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-[(2R,3S,4R,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.01,10.04,9]hexadecane-5-carboxylate

C44H70O23 (966.4307670000001)


   
   
   
   
   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,4s,5r,9s,10s,13s)-13-{[(2r,3s,4r,5s,6s)-5-hydroxy-6-(hydroxymethyl)-3,4-bis({[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})oxan-2-yl]oxy}-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,4s,5r,9s,10s,13s)-13-{[(2r,3s,4r,5s,6s)-5-hydroxy-6-(hydroxymethyl)-3,4-bis({[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})oxan-2-yl]oxy}-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylate

C44H70O23 (966.4307670000001)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 13-{[5-hydroxy-6-(hydroxymethyl)-3,4-bis({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})oxan-2-yl]oxy}-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 13-{[5-hydroxy-6-(hydroxymethyl)-3,4-bis({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})oxan-2-yl]oxy}-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylate

C44H70O23 (966.4307670000001)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,4s,5r,9s,10r,13s)-13-{[(2s,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-3-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,4s,5r,9s,10r,13s)-13-{[(2s,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-3-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylate

C44H70O23 (966.4307670000001)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,4r,5r,9s,10s,13s)-13-{[(2r,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-3,4-bis({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})oxan-2-yl]oxy}-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,4r,5r,9s,10s,13s)-13-{[(2r,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-3,4-bis({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})oxan-2-yl]oxy}-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylate

C44H70O23 (966.4307670000001)


   

(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,4s,5r,9s,10r,13s)-13-{[(2s,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-3,4-bis({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})oxan-2-yl]oxy}-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylate

(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,4s,5r,9s,10r,13s)-13-{[(2s,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-3,4-bis({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})oxan-2-yl]oxy}-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylate

C44H70O23 (966.4307670000001)