Exact Mass: 949.6744688

Exact Mass Matches: 949.6744688

Found 59 metabolites which its exact mass value is equals to given mass value 949.6744688, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

PE-NMe(13D5/13D5)

[(2R)-2,3-bis({[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy})propoxy][2-(methylamino)ethoxy]phosphinic acid

C54H96NO10P (949.6771485999999)


PE-NMe(13D5/13D5) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(13D5/13D5), in particular, consists of one chain of 13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoic acid at the C-1 position and one chain of 13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(13D5/13M5)

[(2R)-3-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}-2-{[13-(3-methyl-5-pentylfuran-2-yl)tridecanoyl]oxy}propoxy][2-(dimethylamino)ethoxy]phosphinic acid

C54H96NO10P (949.6771485999999)


PE-NMe2(13D5/13M5) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(13D5/13M5), in particular, consists of one chain of 13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoic acid at the C-1 position and one chain of 13-(3-methyl-5-pentylfuran-2-yl)tridecanoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(13M5/13D5)

[(2R)-2-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}-3-{[13-(3-methyl-5-pentylfuran-2-yl)tridecanoyl]oxy}propoxy][2-(dimethylamino)ethoxy]phosphinic acid

C54H96NO10P (949.6771485999999)


PE-NMe2(13M5/13D5) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(13M5/13D5), in particular, consists of one chain of 13-(3-methyl-5-pentylfuran-2-yl)tridecanoic acid at the C-1 position and one chain of 13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PC(24:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

(2-{[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-(tetracosanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C54H96NO10P (949.6771485999999)


PC(24:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(24:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one tetracosanoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/24:0)

(2-{[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-(tetracosanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C54H96NO10P (949.6771485999999)


PC(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/24:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/24:0), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of tetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(24:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

(2-{[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-(tetracosanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C54H96NO10P (949.6771485999999)


PC(24:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(24:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one tetracosanoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/24:0)

(2-{[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-(tetracosanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C54H96NO10P (949.6771485999999)


PC(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/24:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/24:0), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of tetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   
   

(2S,3S,4R,9Z)-1-O-[beta-D-galactopyranosyl-(1->4)-beta-D-glucopyranosyl]-2-[(2R)-2-hydroxyhexadecanoylamino]-9-docosene-1,3,4-triol|luidialactoside C

(2S,3S,4R,9Z)-1-O-[beta-D-galactopyranosyl-(1->4)-beta-D-glucopyranosyl]-2-[(2R)-2-hydroxyhexadecanoylamino]-9-docosene-1,3,4-triol|luidialactoside C

C50H95NO15 (949.670136)


   
   
   
   

PC(24:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PC(24:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C54H96NO10P (949.6771485999999)


   

PC(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/24:0)

PC(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/24:0)

C54H96NO10P (949.6771485999999)


   

PC(24:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PC(24:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C54H96NO10P (949.6771485999999)


   

PC(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/24:0)

PC(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/24:0)

C54H96NO10P (949.6771485999999)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-hexacosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-hexacosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C54H96NO10P (949.6771485999999)


   

2-amino-3-[hydroxy-[2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxy-3-[(Z)-tetracos-13-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxy-3-[(Z)-tetracos-13-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C54H96NO10P (949.6771485999999)


   

2-amino-3-[[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(Z)-hexacos-15-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(Z)-hexacos-15-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C54H96NO10P (949.6771485999999)


   

2-amino-3-[[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C54H96NO10P (949.6771485999999)


   

2-amino-3-[[3-[(Z)-docos-13-enoyl]oxy-2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(Z)-docos-13-enoyl]oxy-2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C54H96NO10P (949.6771485999999)


   

(2S)-2-amino-3-[[(2R)-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-2-hexacosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-2-hexacosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C54H96NO10P (949.6771485999999)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxy-2-[(E)-tetracos-15-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxy-2-[(E)-tetracos-15-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C54H96NO10P (949.6771485999999)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxy-3-[(E)-tetracos-15-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxy-3-[(E)-tetracos-15-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C54H96NO10P (949.6771485999999)


   

(2S)-2-amino-3-[[(2R)-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-hexacosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-hexacosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C54H96NO10P (949.6771485999999)


   

(2S)-2-amino-3-[[(2R)-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-2-[(E)-hexacos-5-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-2-[(E)-hexacos-5-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C54H96NO10P (949.6771485999999)


   

2-[[(8E,12E,16E)-3,4-dihydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-7,10,13,16,19,22,25,28,31-nonaenoyl]amino]octadeca-8,12,16-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(8E,12E,16E)-3,4-dihydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-7,10,13,16,19,22,25,28,31-nonaenoyl]amino]octadeca-8,12,16-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C57H94N2O7P+ (949.6798283999999)


   

phosphatidylinositol 42:0(1-)

phosphatidylinositol 42:0(1-)

C51H98O13P (949.6744688)


A 1-phosphatidyl-1D-myo-inositol(1-) in which the acyl groups at C-1 and C-2 contain 42 carbons in total and 0 double bonds.

   

ST(48:6)

ST(m22:1_26:5)

C54H95NO10S (949.667633)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   

(2r)-n-[(2s,3s,4r,9z)-1-{[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxydocos-9-en-2-yl]-2-hydroxyhexadecanimidic acid

(2r)-n-[(2s,3s,4r,9z)-1-{[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxydocos-9-en-2-yl]-2-hydroxyhexadecanimidic acid

C50H95NO15 (949.670136)


   

(2r)-n-[(2s,3s,4r,13z)-1-{[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxydocos-13-en-2-yl]-2-hydroxyhexadecanimidic acid

(2r)-n-[(2s,3s,4r,13z)-1-{[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxydocos-13-en-2-yl]-2-hydroxyhexadecanimidic acid

C50H95NO15 (949.670136)


   

n-[(13z)-1-{[3,4-dihydroxy-6-(hydroxymethyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxydocos-13-en-2-yl]-2-hydroxyhexadecanimidic acid

n-[(13z)-1-{[3,4-dihydroxy-6-(hydroxymethyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxydocos-13-en-2-yl]-2-hydroxyhexadecanimidic acid

C50H95NO15 (949.670136)


   

n-(1-{[3,4-dihydroxy-6-(hydroxymethyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxydocos-9-en-2-yl)-2-hydroxyhexadecanimidic acid

n-(1-{[3,4-dihydroxy-6-(hydroxymethyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxydocos-9-en-2-yl)-2-hydroxyhexadecanimidic acid

C50H95NO15 (949.670136)


   

n-(1-{[3,4-dihydroxy-6-(hydroxymethyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxydocos-13-en-2-yl)-2-hydroxyhexadecanimidic acid

n-(1-{[3,4-dihydroxy-6-(hydroxymethyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxydocos-13-en-2-yl)-2-hydroxyhexadecanimidic acid

C50H95NO15 (949.670136)