Exact Mass: 948.5294
Exact Mass Matches: 948.5294
Found 82 metabolites which its exact mass value is equals to given mass value 948.5294
,
within given mass tolerance error 0.001 dalton. Try search metabolite list with more accurate mass tolerance error
0.0002 dalton.
Notoginsenoside H
Notoginsenoside H is found in tea. Notoginsenoside H is a constituent of Panax notoginseng (sanchi) Constituent of Panax notoginseng (sanchi). Notoginsenoside H is found in tea.
Momordicoside B
Momordicoside B is found in bitter gourd. Momordicoside B is a constituent of Momordica charantia (bitter melon) Constituent of Momordica charantia (bitter melon). Momordicoside B is found in bitter gourd and fruits.
Vinaginsenoside R6
Vinaginsenoside R6 is a constituent of Panax vietnamensis (Vietnamese gingseng). Constituent of Panax vietnamensis (Vietnamese gingseng)
Vinaginsenoside R5
Vinaginsenoside R5 is a constituent of Panax vietnamensis (Vietnamese gingseng). Constituent of Panax vietnamensis (Vietnamese gingseng)
(3b,6a,12b,17a,20S)-Dammar-24-ene-3,6,12,17,20-pentol 20-[glucosyl-(1->2)-glucoside] 6-xyloside
(3b,6a,12b,17a,20S)-Dammar-24-ene-3,6,12,17,20-pentol 20-[glucosyl-(1->2)-glucoside] 6-xyloside is found in fruits. (3b,6a,12b,17a,20S)-Dammar-24-ene-3,6,12,17,20-pentol 20-[glucosyl-(1->2)-glucoside] 6-xyloside is a constituent of Cyclanthera pedata (achoccha) Constituent of Cyclanthera pedata (achoccha). (3b,6a,12b,17a,20S)-Dammar-24-ene-3,6,12,17,20-pentol 20-[glucosyl-(1->2)-glucoside] 6-xyloside is found in fruits.
PE(22:5(4Z,7Z,10Z,13Z,16Z)/LTE4)
PE(22:5(4Z,7Z,10Z,13Z,16Z)/LTE4) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:5(4Z,7Z,10Z,13Z,16Z)/LTE4), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).
PE(LTE4/22:5(4Z,7Z,10Z,13Z,16Z))
PE(LTE4/22:5(4Z,7Z,10Z,13Z,16Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(LTE4/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of one Leukotriene E4 at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).
PE(22:5(7Z,10Z,13Z,16Z,19Z)/LTE4)
PE(22:5(7Z,10Z,13Z,16Z,19Z)/LTE4) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:5(7Z,10Z,13Z,16Z,19Z)/LTE4), in particular, consists of one chain of one 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).
PE(LTE4/22:5(7Z,10Z,13Z,16Z,19Z))
PE(LTE4/22:5(7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(LTE4/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one Leukotriene E4 at the C-1 position and one chain of 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).
HosenkosideF
Hosenkoside F is a natural product found in Impatiens balsamina with data available. Hosenkoside F is a baccharane glycoside isolated from the seeds of impatiens balsamina.
HosenkosideG
Hosenkoside G is a natural product found in Impatiens balsamina with data available.
3-O-beta-D-xylopyranosyl-6,25-di-O-beta-D-glucopyranosyl-3beta,6alpha,16beta,24(S),25-pentahydroxycycloartane|astragalaoside VII
3-O-beta-D-xylopyranosyl-24,25-di-O-beta-D-glucopyranosyl-3beta,6alpha,16beta,24(S),25-pentahydroxy-cycloartane
16-O-[beta-D-glucopyranosyl(1-->3)-beta-D-glucopyranosyl]-20-O-alpha-L-arabinopyranosyl-(20S,24S),3beta,16beta,20,24,25-pentahydroxy-9,19-cyclolanostane
(25R)-26-O-beta-D-glucopyranosyl-5alpha-furostan-2alpha,3beta,22alpha,26-tetraol 3-O-[beta-D-glucopyranosyl-(1->4)-O-beta-D-galactopyranoside]
(25S)-26-(beta-D-glucopyranosyloxy)-3beta-hydroxy-22alpha-methoxy-5alpha-furostan-6alpha-yl-O-alpha-L-rhamnopyranosyl-(1?3)-beta-d-glucopyranoside
16beta-O-[beta-D-glucopyranosyl-(1->2)-alpha-1-rhamnopyranosyl-(1->4)-6-oxo-beta-D-glucopyranosyl]-5alpha-poriferastane-3beta,15beta,23S-triol|acanthifolioside F
24R-cycloartan-3beta,6alpha,16beta,24,25-pentaol 3-O-beta-D-xylopyranoside 16-O-beta-D-glucopyranoside 25-O-beta-D-glucopyranoside|cycloglobiceposide B|cyclosieversioside B
Notoginsenoside H
Piperonylamine
(3b,6a,12b,17a,20S)-Dammar-24-ene-3,6,12,17,20-pentol 20-[glucosyl-(1->2)-glucoside] 6-xyloside
Vinaginsenoside R5
Vinaginsenoside R6
(3R,4R,5S,6S)-6-[(3S,8R,9R,10S,13R,14S,17R)-3-[(2R,3R,4S,5R,6R)-3,5-dihydroxy-6-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]-4-[(2S,3S,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-2-yl]oxy-4,4,9,13,14-pentamethyl-2,3,7,8,10,11,12,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-methylheptane-2,3,4,5-tetrol
(2r,3r,4s,5s,6r)-2-{[(1r,2s,4ar,4br,6as,7r,8r,10ar,10br,12ar)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-7-hydroxy-8-[(3z)-5-hydroxy-4-methylpent-3-en-1-yl]-8-(hydroxymethyl)-1,4a,10a,10b-tetramethyl-dodecahydro-2h-chrysen-1-yl]methoxy}-6-(hydroxymethyl)oxane-3,4,5-triol
2-[(2-{[2-({7,11-dihydroxy-1-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl}oxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl)oxy]oxane-3,4,5-triol
(2s,3r,4s,5r,6r)-2-{[(3s,6r)-2-hydroxy-6-[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-7,7,12,16-tetramethyl-9-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-{[(2s,3r,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-2-methylheptan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2r,3r,4s,5s,6r)-2-[(2r)-2-[(1r,2s,4ar,4br,6'r,6ar,7r,8s,10ar,10br,12as)-8-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-1-hydroxy-7-(hydroxymethyl)-4a,4b,7,10a-tetramethyl-dodecahydro-1h-spiro[chrysene-2,3'-oxan]-6'-yl]propoxy]-6-(hydroxymethyl)oxane-3,4,5-triol
(2r,3r,4s,5s,6r)-2-{[(1s,3r,6s,8s,9s,11r,12s,14s,15s,16r)-6-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-15-[(2r,5s)-5,6-dihydroxy-6-methylheptan-2-yl]-14-hydroxy-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
3β,12β,23s,24r-tetrahydroxy-20s,25-epoxy-dammarane 3-o-[β-d-glucopyranosyl(1→2)][β-d-xylopyranosyl-(1→6)]-β-d-glucopyrano-side
{"Ingredient_id": "HBIN008006","Ingredient_name": "3\u03b2,12\u03b2,23s,24r-tetrahydroxy-20s,25-epoxy-dammarane 3-o-[\u03b2-d-glucopyranosyl(1\u21922)][\u03b2-d-xylopyranosyl-(1\u21926)]-\u03b2-d-glucopyrano-side","Alias": "NA","Ingredient_formula": "C47H80O19","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "21086","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}