Exact Mass: 947.1686943999999
Exact Mass Matches: 947.1686943999999
Found 38 metabolites which its exact mass value is equals to given mass value 947.1686943999999
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
PubChem CID: 25203841; (Acyl-CoA); [M+H]+;
3,4-Dimethylideneoctanedioyl-CoA
3,4-dimethylideneoctanedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 3_4-dimethylideneoctanedioic acid thioester of coenzyme A. 3,4-dimethylideneoctanedioyl-coa is an acyl-CoA with 8 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 3,4-dimethylideneoctanedioyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 3,4-dimethylideneoctanedioyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 3,4-Dimethylideneoctanedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 3,4-Dimethylideneoctanedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 3,4-Dimethylideneoctanedioyl-CoA into 3_4-Dimethylideneoctanedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 3_4-Dimethylideneoctanedioylcarnitine is converted back to 3,4-Dimethylideneoctanedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 3,4-Dimethylideneoctanedioyl-CoA occurs in four steps. First, since 3,4-Dimethylideneoctanedioyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 3,4-Dimethylideneoctanedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase cat...
2,3-Dimethylideneoctanedioyl-CoA
2,3-dimethylideneoctanedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 2_3-dimethylideneoctanedioic acid thioester of coenzyme A. 2,3-dimethylideneoctanedioyl-coa is an acyl-CoA with 8 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 2,3-dimethylideneoctanedioyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 2,3-dimethylideneoctanedioyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 2,3-Dimethylideneoctanedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 2,3-Dimethylideneoctanedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 2,3-Dimethylideneoctanedioyl-CoA into 2_3-Dimethylideneoctanedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 2_3-Dimethylideneoctanedioylcarnitine is converted back to 2,3-Dimethylideneoctanedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 2,3-Dimethylideneoctanedioyl-CoA occurs in four steps. First, since 2,3-Dimethylideneoctanedioyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 2,3-Dimethylideneoctanedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase cat...
Deca-2,5-dienedioyl-CoA
Deca-2,5-dienedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a deca-2_5-dienedioic acid thioester of coenzyme A. Deca-2,5-dienedioyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Deca-2,5-dienedioyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Deca-2,5-dienedioyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Deca-2,5-dienedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Deca-2,5-dienedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Deca-2,5-dienedioyl-CoA into Deca-2_5-dienedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Deca-2_5-dienedioylcarnitine is converted back to Deca-2,5-dienedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Deca-2,5-dienedioyl-CoA occurs in four steps. First, since Deca-2,5-dienedioyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Deca-2,5-dienedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase o...
(2Z,4E)-Deca-2,4-dienedioyl-CoA
(2z,4e)-deca-2,4-dienedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (2Z_4E)-deca-2_4-dienedioic acid thioester of coenzyme A. (2z,4e)-deca-2,4-dienedioyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (2z,4e)-deca-2,4-dienedioyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (2z,4e)-deca-2,4-dienedioyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (2Z,4E)-Deca-2,4-dienedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (2Z,4E)-Deca-2,4-dienedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (2Z,4E)-Deca-2,4-dienedioyl-CoA into (2Z_4E)-Deca-2_4-dienedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (2Z_4E)-Deca-2_4-dienedioylcarnitine is converted back to (2Z,4E)-Deca-2,4-dienedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (2Z,4E)-Deca-2,4-dienedioyl-CoA occurs in four steps. First, since (2Z,4E)-Deca-2,4-dienedioyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (2Z,4E)-Deca-2,4-dienedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the ad...
Deca-2,7-dienedioyl-CoA
Deca-2,7-dienedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a deca-2_7-dienedioic acid thioester of coenzyme A. Deca-2,7-dienedioyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Deca-2,7-dienedioyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Deca-2,7-dienedioyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Deca-2,7-dienedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Deca-2,7-dienedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Deca-2,7-dienedioyl-CoA into Deca-2_7-dienedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Deca-2_7-dienedioylcarnitine is converted back to Deca-2,7-dienedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Deca-2,7-dienedioyl-CoA occurs in four steps. First, since Deca-2,7-dienedioyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Deca-2,7-dienedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase o...
Deca-2,8-dienedioyl-CoA
Deca-2,8-dienedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a deca-2_8-dienedioic acid thioester of coenzyme A. Deca-2,8-dienedioyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Deca-2,8-dienedioyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Deca-2,8-dienedioyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Deca-2,8-dienedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Deca-2,8-dienedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Deca-2,8-dienedioyl-CoA into Deca-2_8-dienedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Deca-2_8-dienedioylcarnitine is converted back to Deca-2,8-dienedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Deca-2,8-dienedioyl-CoA occurs in four steps. First, since Deca-2,8-dienedioyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Deca-2,8-dienedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase o...
Deca-3,6-dienedioyl-CoA
Deca-3,6-dienedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a deca-3_6-dienedioic acid thioester of coenzyme A. Deca-3,6-dienedioyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Deca-3,6-dienedioyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Deca-3,6-dienedioyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Deca-3,6-dienedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Deca-3,6-dienedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Deca-3,6-dienedioyl-CoA into Deca-3_6-dienedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Deca-3_6-dienedioylcarnitine is converted back to Deca-3,6-dienedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Deca-3,6-dienedioyl-CoA occurs in four steps. First, since Deca-3,6-dienedioyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Deca-3,6-dienedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase o...
Deca-3,5-dienedioyl-CoA
Deca-3,5-dienedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a deca-3_5-dienedioic acid thioester of coenzyme A. Deca-3,5-dienedioyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Deca-3,5-dienedioyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Deca-3,5-dienedioyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Deca-3,5-dienedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Deca-3,5-dienedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Deca-3,5-dienedioyl-CoA into Deca-3_5-dienedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Deca-3_5-dienedioylcarnitine is converted back to Deca-3,5-dienedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Deca-3,5-dienedioyl-CoA occurs in four steps. First, since Deca-3,5-dienedioyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Deca-3,5-dienedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase o...
Deca-4,6-dienedioyl-CoA
Deca-4,6-dienedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a deca-4_6-dienedioic acid thioester of coenzyme A. Deca-4,6-dienedioyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Deca-4,6-dienedioyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Deca-4,6-dienedioyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Deca-4,6-dienedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Deca-4,6-dienedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Deca-4,6-dienedioyl-CoA into Deca-4_6-dienedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Deca-4_6-dienedioylcarnitine is converted back to Deca-4,6-dienedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Deca-4,6-dienedioyl-CoA occurs in four steps. First, since Deca-4,6-dienedioyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Deca-4,6-dienedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase o...
Deca-2,6-dienedioyl-CoA
Deca-2,6-dienedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a deca-2_6-dienedioic acid thioester of coenzyme A. Deca-2,6-dienedioyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Deca-2,6-dienedioyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Deca-2,6-dienedioyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Deca-2,6-dienedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Deca-2,6-dienedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Deca-2,6-dienedioyl-CoA into Deca-2_6-dienedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Deca-2_6-dienedioylcarnitine is converted back to Deca-2,6-dienedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Deca-2,6-dienedioyl-CoA occurs in four steps. First, since Deca-2,6-dienedioyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Deca-2,6-dienedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase o...
Deca-3,7-dienedioyl-CoA
Deca-3,7-dienedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a deca-3_7-dienedioic acid thioester of coenzyme A. Deca-3,7-dienedioyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Deca-3,7-dienedioyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Deca-3,7-dienedioyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Deca-3,7-dienedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Deca-3,7-dienedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Deca-3,7-dienedioyl-CoA into Deca-3_7-dienedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Deca-3_7-dienedioylcarnitine is converted back to Deca-3,7-dienedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Deca-3,7-dienedioyl-CoA occurs in four steps. First, since Deca-3,7-dienedioyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Deca-3,7-dienedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase o...
CoA 10:3;O2
S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 4-phosphonooxypentanethioate
S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 3-(3,4-dihydroxyphenyl)-3-hydroxypropanethioate
[(2R,3R,4R,5S,6R)-2-[[(2R,3R,4S,5S)-5-amino-3,4-dihydroxyoxan-2-yl]oxy-hydroxyphosphoryl]oxy-3-(3-formyloxypropanoylamino)-5-hydroxy-6-[[(2R,3R,4R,5S,6R)-6-(hydroxymethyl)-3-(3-hydroxypropanoylamino)-4-(3-hydroxypropanoyloxy)-5-phosphonooxyoxan-2-yl]oxymethyl]oxan-4-yl] 3-hydroxypropanoate
C30H51N3O27P2 (947.2185076000001)
Mimosine-CoA; (Acyl-CoA); [M+H]+
C29H44N9O19P3S (947.1686943999999)
[(2R)-3,3,4-trimethyl-6-oxo-3,6-dihydro-1H-pyran-2-yl]acetyl-CoA
An acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (2R)-3,3,4-trimethyl-6-oxo-3,6-dihydro-1H-pyran-2-yl]acetic acid.
3,4,4-trimethylhepta-2,5-dienoyl-CoA
A multi-methyl-branched fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of 3,4,4-trimethylhepta-2,5-dienoic acid.
11-(3,5-dibromo-4-hydroxyphenyl)-n-[5,8,11,14-tetrahydroxy-6,9-bis(c-hydroxycarbonimidoylmethyl)-12-isopropyl-16-methyl-2-oxo-3-(sec-butyl)-1-oxa-4,7,10,13-tetraazacyclohexadeca-4,7,10,13-tetraen-15-yl]undeca-2,4,6,8,10-pentaenimidic acid
C40H51Br2N7O10 (947.2063946000001)
11-(3,5-dibromo-4-hydroxyphenyl)-n-[5,8,11,14-tetrahydroxy-6,9-bis(c-hydroxycarbonimidoylmethyl)-12-isopropyl-16-methyl-3-(2-methylpropyl)-2-oxo-1-oxa-4,7,10,13-tetraazacyclohexadeca-4,7,10,13-tetraen-15-yl]undeca-2,4,6,8,10-pentaenimidic acid
C40H51Br2N7O10 (947.2063946000001)
(2e,4e,6e,8e,10e)-11-(3,5-dibromo-4-hydroxyphenyl)-n-[(3s,6s,9s,12s,15s,16r)-5,8,11,14-tetrahydroxy-6,9-bis(c-hydroxycarbonimidoylmethyl)-12-isopropyl-16-methyl-3-(2-methylpropyl)-2-oxo-1-oxa-4,7,10,13-tetraazacyclohexadeca-4,7,10,13-tetraen-15-yl]undeca-2,4,6,8,10-pentaenimidic acid
C40H51Br2N7O10 (947.2063946000001)
(2e,4e,6e,8e,10e)-n-[(3s,6s,9s,12s,15s,16r)-3-[(2r)-butan-2-yl]-5,8,11,14-tetrahydroxy-6,9-bis(c-hydroxycarbonimidoylmethyl)-12-isopropyl-16-methyl-2-oxo-1-oxa-4,7,10,13-tetraazacyclohexadeca-4,7,10,13-tetraen-15-yl]-11-(3,5-dibromo-4-hydroxyphenyl)undeca-2,4,6,8,10-pentaenimidic acid
C40H51Br2N7O10 (947.2063946000001)