Exact Mass: 944.4935532000001
Exact Mass Matches: 944.4935532000001
Found 69 metabolites which its exact mass value is equals to given mass value 944.4935532000001
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Kudzusaponin SA2
Kudzusaponin SA2 is found in pulses. Kudzusaponin SA2 is a constituent of kudzu (Pueraria lobata). Constituent of kudzu (Pueraria lobata). Kudzusaponin SA2 is found in pulses.
Araliasaponin II
Araliasaponin II is found in green vegetables. Araliasaponin II is a constituent of Aralia elata (Japanese angelica tree). Constituent of Aralia elata (Japanese angelica tree). Araliasaponin II is found in green vegetables.
PGP(18:0/6 keto-PGF1alpha)
PGP(18:0/6 keto-PGF1alpha) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:0/6 keto-PGF1alpha), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(6 keto-PGF1alpha/18:0)
PGP(6 keto-PGF1alpha/18:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(6 keto-PGF1alpha/18:0), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(18:0/TXB2)
PGP(18:0/TXB2) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:0/TXB2), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(TXB2/18:0)
PGP(TXB2/18:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(TXB2/18:0), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(i-18:0/6 keto-PGF1alpha)
PGP(i-18:0/6 keto-PGF1alpha) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-18:0/6 keto-PGF1alpha), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(6 keto-PGF1alpha/i-18:0)
PGP(6 keto-PGF1alpha/i-18:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(6 keto-PGF1alpha/i-18:0), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(i-18:0/TXB2)
PGP(i-18:0/TXB2) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-18:0/TXB2), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(TXB2/i-18:0)
PGP(TXB2/i-18:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(TXB2/i-18:0), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2E,6R)-6-[(1R,3R,6S,8R,12S,15R,16R)-13,17-dihydroxy-7,7,12,16-tetramethyl-6-{[(2R)-3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-2-methylhept-2-enoate
cimigenol-3-O-beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranosyl-(1->2)-beta-D-xylopyranoside
20,30-dihydroxy-29-noroleanolic acid 28-O-alpha-L-rhamnopyranosyl-(1->4)-beta-D-glucopyranosyl-(1->6)-beta-D-glucopyranosyl ester|yemuoside YM17
3-O-beta-D-glucopyranosyl-(1 -> 3)-alpha-L-arabinopyranosyl 3beta,23,30-trihydroxy olean-12-en-28-oic acid 28-O-beta-D-glucopyranosyl ester
20S,22R,23S,24R-16beta,23;22,25-diepoxy-cycloartane-3beta,23,24-triol 3-O-beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranosyl-(1->2)-beta-D-xylopyranoside
3-O-beta-D-xylopyranosyl-(1->3)-beta-D-galactopyranosyl-(1->3)-beta-D-glucopyranosylbayogenin|caryocaroside III-4
2beta,3beta,23-trihydroxyolean-12-en-28-oic acid-28-O-beta-D-xylopyranosyl-(1?6)-[beta-D-glucopyranosyl-(1?2)]-beta-D-glucopyranoside
3-O-alpha-L-arabinopyranosyl-caulophyllogenin-28-O-beta-D-glucopyranosyl-(1->6)-beta-D-glucopyranosyl ester|3beta-[(alpha-L-arabinopyranosyl)oxy]-16alpha,23-dihydroxyolean-12-en-28-oic acid O-beta-D-glucopyranosyl-(1->6)-beta-D-glucopyranosyl ester|leiyemudanoside A
3alpha,23-dihydroxylup-20(29)-en-28-oic acid 28-O-[4-O-alpha-L-rhamnopyranosyl-6-O-beta-D-glucopyranosyl]-beta-D-glucopyranosyl ester
(3beta,16alpha,20alpha)-3,16,28-trihydroxyolean-12-en-29-oic acid 3-{O-beta-D-glucopyranosyl-(1->2)-O-[beta-D-glucopyranosyl-(1->4)]-alpha-L-arabinopyranoside}|(3beta,16alpha,20alpha)-3-{{O-beta-D-glucopyranosyl-(1->2)-O-[beta-D-glucopyranosyl-(1->4)]-alpha-L-arabinopyranosiyl}oxy}-16,28-dihydroxyolean-12-en-29-oic acid
15beta-hydroxylineolon 3-O-beta-D-thevetopyranosyl-(1->4)-beta-D-canaropyranosyl-(1->4)-beta-D-cymaropyranosyl-(1->4)-beta-D-digitoxopyranoside
acacic acid 3-O-alpha-L-arabinopyranosyl(1->6)-[beta-D-glucopyranosyl(1->2)]-beta-D-glucopyranoside
3-O-(Apiofuranosyl-(1->4)-beta-D-glucopyranosyl)-(25-O-beta-D-glucopyranosyl)-16beta-hydroxy-gratiogenine|3-O-[Apiofuranosyl-(1->4)-beta-D-glucopyranosyl]-(25-O-beta-D-glucopyranosyl)-16beta-hydroxy-gratiogenine
3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2E,6R)-6-[(1R,3R,6S,8R,12S,15R,16R)-13,17-dihydroxy-7,7,12,16-tetramethyl-6-{[(2R)-3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-2-methylhept-2-enoate_95.1\\%
3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2E,6R)-6-[(1R,3R,6S,8R,12S,15R,16R)-13,17-dihydroxy-7,7,12,16-tetramethyl-6-{[(2R)-3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-2-methylhept-2-enoate_major
3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2E,6R)-6-[(1R,3R,6S,8R,12S,15R,16R)-13,17-dihydroxy-7,7,12,16-tetramethyl-6-{[(2R)-3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-2-methylhept-2-enoate_93.3\\%
3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2E,6R)-6-[(1R,3R,6S,8R,12S,15R,16R)-13,17-dihydroxy-7,7,12,16-tetramethyl-6-{[(2R)-3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-2-methylhept-2-enoate_39.7\\%
3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2E,6R)-6-[(1R,3R,6S,8R,12S,15R,16R)-13,17-dihydroxy-7,7,12,16-tetramethyl-6-{[(2R)-3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-2-methylhept-2-enoate_2.2\\%
3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2E,6R)-6-[(1R,3R,6S,8R,12S,15R,16R)-13,17-dihydroxy-7,7,12,16-tetramethyl-6-{[(2R)-3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-2-methylhept-2-enoate_66.0\\%
3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2E,6R)-6-[(1R,3R,6S,8R,12S,15R,16R)-13,17-dihydroxy-7,7,12,16-tetramethyl-6-{[(2R)-3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]-2-methylhept-2-enoate_45.6\\%
araliasaponin II
Kudzusaponin SA2
Ac-Cha-Arg-Ala-Met-Cys(Acm)-Ser-Leu-NH2
C40H72N12O10S2 (944.4935532000001)