Exact Mass: 942.4894
Exact Mass Matches: 942.4894
Found 145 metabolites which its exact mass value is equals to given mass value 942.4894
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Deslanoside
Deslanoside is a cardenolide glycoside that is lanatoside C with the acetoxy group replaced by a hydroxy group. It has a role as an anti-arrhythmia drug, a cardiotonic drug, a metabolite and an EC 3.6.3.9 (Na(+)/K(+)-transporting ATPase) inhibitor. It is a 14beta-hydroxy steroid, a 12beta-hydroxy steroid, a cardenolide glycoside and a tetrasaccharide derivative. Deacetyllanatoside C. A cardiotonic glycoside from the leaves of Digitalis lanata. Deslanoside is a natural product found in Digitalis parviflora, Digitalis viridiflora, and other organisms with data available. Deacetyllanatoside C. A cardiotonic glycoside from the leaves of Digitalis lanata. Deslanoside is only found in individuals that have used or taken this drug. It is a cardiotonic glycoside from the leaves of Digitalis lanata. [PubChem]Deslanoside inhibits the Na-K-ATPase membrane pump, resulting in an increase in intracellular sodium and calcium concentrations. Increased intracellular concentrations of calcium may promote activation of contractile proteins (e.g., actin, myosin). Deslanoside also acts on the electrical activity of the heart, increasing the slope of phase 4 depolarization, shortening the action potential duration, and decreasing the maximal diastolic potential. C - Cardiovascular system > C01 - Cardiac therapy > C01A - Cardiac glycosides > C01AA - Digitalis glycosides A cardenolide glycoside that is lanatoside C with the acetoxy group replaced by a hydroxy group. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D004071 - Digitalis Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides C78274 - Agent Affecting Cardiovascular System > C78322 - Cardiotonic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D004791 - Enzyme Inhibitors Deslanoside (Desacetyllanatoside C) is a rapidly acting cardiac glycoside used to treat congestive heart failure and supraventricular arrhythmias due to reentry mechanisms, and to control ventricular rate in the treatment of chronic atrial fibrillation. Deslanoside inhibits the Na-K-ATPase membrane pump, resulting in an increase in intracellular sodium and calcium concentrations [1][2][3]. Deslanoside (Desacetyllanatoside C) is a rapidly acting cardiac glycoside used to treat congestive heart failure and supraventricular arrhythmias due to reentry mechanisms, and to control ventricular rate in the treatment of chronic atrial fibrillation. Deslanoside inhibits the Na-K-ATPase membrane pump, resulting in an increase in intracellular sodium and calcium concentrations [1][2][3].
Cynarasaponin D
Constituent of Cynara cardunculus (cardoon). Cynarasaponin D is found in herbs and spices and green vegetables. Cynarasaponin D is found in green vegetables. Cynarasaponin D is a constituent of Cynara cardunculus (cardoon).
Medicoside H
Medicoside H is found in cereals and cereal products. Medicoside H is isolated from the roots of Medicago sativa (alfalfa). Isolated from the roots of Medicago sativa (alfalfa). Medicoside H is found in cereals and cereal products.
Cynarasaponin J
Constituent of Cynara cardunculus (cardoon). Cynarasaponin J is found in herbs and spices and green vegetables. Cynarasaponin J is found in green vegetables. Cynarasaponin J is a constituent of Cynara cardunculus (cardoon).
Phytolaccoside I
Phytolaccoside I is found in fruits. Phytolaccoside I is a constituent of Phytolacca americana (pokeberry). Constituent of Phytolacca americana (pokeberry). Phytolaccoside I is found in fruits and green vegetables.
PGP(18:1(11Z)/6 keto-PGF1alpha)
PGP(18:1(11Z)/6 keto-PGF1alpha) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(11Z)/6 keto-PGF1alpha), in particular, consists of one chain of one 11Z-octadecenoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(6 keto-PGF1alpha/18:1(11Z))
PGP(6 keto-PGF1alpha/18:1(11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(6 keto-PGF1alpha/18:1(11Z)), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(18:1(11Z)/TXB2)
PGP(18:1(11Z)/TXB2) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(11Z)/TXB2), in particular, consists of one chain of one 11Z-octadecenoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(TXB2/18:1(11Z))
PGP(TXB2/18:1(11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(TXB2/18:1(11Z)), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(18:1(9Z)/6 keto-PGF1alpha)
PGP(18:1(9Z)/6 keto-PGF1alpha) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(9Z)/6 keto-PGF1alpha), in particular, consists of one chain of one 9Z-octadecenoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(6 keto-PGF1alpha/18:1(9Z))
PGP(6 keto-PGF1alpha/18:1(9Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(6 keto-PGF1alpha/18:1(9Z)), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(18:1(9Z)/TXB2)
PGP(18:1(9Z)/TXB2) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(9Z)/TXB2), in particular, consists of one chain of one 9Z-octadecenoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(TXB2/18:1(9Z))
PGP(TXB2/18:1(9Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(TXB2/18:1(9Z)), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
(2S,3S,4R,5R,6R)-6-[[(3R,6aR,6bS,8R,8aR,14bR)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-4,5-dihydroxy-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxane-2-carboxylic acid
3-O-beta-D-xylopyranosyl(1->2)-beta-D-glucuronopyranosyl-3beta,21beta,24-trihydroxy-22-oxoolean-12-en-21-O-beta-D-glucopyranoside|gliricidoside A
3-O-[beta-D-glucuronopyranosyl]-30-O-[alpha-L-arabinopyranosyl(1->2)-beta-D-glucopyranosyl] 3beta,30-dihydroxyolean-12-en-28-oic acid
oleanolic acid 3-O-[alpha-L-arabinoranosyl-(1->3)-beta-D-glucuronopyranosyl]-28-O-beta-D-glucopyranoside
(3beta)-3-{[alpha-L-arabinopyranosyl-(1->2)-beta-D-glucopyranosyl]oxy}urs-12-ene-22,28-dioic acid 28-(beta-D-glucopyranosyl) ester
(3beta)-3-O-(beta-D-xylopyranosyl)gypsogenic acid 28-{beta-D-glucopyranosyl-(1->6)-beta-D-galactopyranosyl} ester|repensoside A
3beta-O-beta-D-glucopyranosyl-(1->3)-[beta-D-xylopyranosyl-(1->2)]-beta-D-glucuronopyranosyl-23-hydroxylup-20(29)-en-28-oic acid
quinovic acid 3beta-O-beta-D-glucopyranosyl-(1->4)-alpha-L-rhamnopyranosyl-(28-1)-beta-D-glucopyranosyl ester
3-O-beta-D-glucopyranosyl-(1->2)-beta-D-glucuronopyranosyl-22-O-acetyl-21-O-propanoyl-3beta,15alpha,16alpha,21beta,22alpha,28-hexahydroxyolean-12-ene|hydrocotyloside I
3-O-[alpha-L-rhamnopyranosyl-(1-->2)-beta-D-xylopyranosyl-(1-->2)-beta-D-glucuronopyranosyl]-3beta,22beta,24-trihydroxyolean-12-en-29-oic acid
cynauricoside A|kidjoranin 3-O-beta-D-cymaropyranosyl-(1?4)-alpha-L-diginopyranosyl-(1?4)-beta-D-cymaropyranoside
ikemagenin 3-O-beta-D-thevetopyranosyl-(1->4)-beta-D-cymaropyranosyl-(1->4)-beta-D-cymaropyranoside
26-O-beta-D-glucopyranosyl-22-O-methylfurosta-5,25(27)-diene-1beta,3beta,22xi,26-tetrol 1-O-[O-alpha-L-rhamnopyranosyl-(1-->2)-4-O-acetyl-alpha-L-arabinopyranoside
3-O-[alpha-L-arabinopyranosyl(1->2)-beta-D-glucuronopyranosyl]-28-O-(beta-D-glucopyranosyl)-2-beta-hydroxyoleanolic acid|3-O-[alpha-L-arabinopyranosyl(1->2)-beta-D-glucuronopyranosyl]-28-O-[beta-D-glucopyranoside]-2beta-hydroxy oleanolic acid
3-O-[alpha-L-arabinopyranosyl(1->2)-beta-D-glucuronopyranosyl]-30-O-[beta-D-glucopyranosyl] 3beta,30-dihydroxyolean-12-en-28-oic acid
C47H74O19_1-O-{(3beta,5xi,9xi,18xi)-3-[(2-O-Hexopyranosylpentopyranosyl)oxy]-29-hydroxy-28,29-dioxoolean-12-en-28-yl}hexopyranose
Deslanoside
C - Cardiovascular system > C01 - Cardiac therapy > C01A - Cardiac glycosides > C01AA - Digitalis glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D004071 - Digitalis Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides C78274 - Agent Affecting Cardiovascular System > C78322 - Cardiotonic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D004791 - Enzyme Inhibitors Deslanoside (Desacetyllanatoside C) is a rapidly acting cardiac glycoside used to treat congestive heart failure and supraventricular arrhythmias due to reentry mechanisms, and to control ventricular rate in the treatment of chronic atrial fibrillation. Deslanoside inhibits the Na-K-ATPase membrane pump, resulting in an increase in intracellular sodium and calcium concentrations [1][2][3]. Deslanoside (Desacetyllanatoside C) is a rapidly acting cardiac glycoside used to treat congestive heart failure and supraventricular arrhythmias due to reentry mechanisms, and to control ventricular rate in the treatment of chronic atrial fibrillation. Deslanoside inhibits the Na-K-ATPase membrane pump, resulting in an increase in intracellular sodium and calcium concentrations [1][2][3].
Medicoside H
Cynarasaponin J
Cynarasaponin D
gordonoside K
A triterpenoid saponin with 3,16-dihydroxyolean-12-en-28-oic acid as the aglycone. Isolated from the stems of Gordonia chrysandra, it exhibits a strong inhibitory effect on nitric oxide production.
Desace
C - Cardiovascular system > C01 - Cardiac therapy > C01A - Cardiac glycosides > C01AA - Digitalis glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D004071 - Digitalis Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides C78274 - Agent Affecting Cardiovascular System > C78322 - Cardiotonic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D004791 - Enzyme Inhibitors Deslanoside (Desacetyllanatoside C) is a rapidly acting cardiac glycoside used to treat congestive heart failure and supraventricular arrhythmias due to reentry mechanisms, and to control ventricular rate in the treatment of chronic atrial fibrillation. Deslanoside inhibits the Na-K-ATPase membrane pump, resulting in an increase in intracellular sodium and calcium concentrations [1][2][3]. Deslanoside (Desacetyllanatoside C) is a rapidly acting cardiac glycoside used to treat congestive heart failure and supraventricular arrhythmias due to reentry mechanisms, and to control ventricular rate in the treatment of chronic atrial fibrillation. Deslanoside inhibits the Na-K-ATPase membrane pump, resulting in an increase in intracellular sodium and calcium concentrations [1][2][3].
Card-20(22)-enolide, 3-[(O-beta-D-glucopyranosyl-(1-->4)-O-2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1-->4)-O-2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1-->4)-2,6-dideoxy-beta-D-ribo-hexopyranosyl)oxy]-14,16-dihydroxy-, (3beta,5beta,16beta)-
(2r,3s,4r,5r,6s)-6-({[(2s,3s,4s,5r,6s)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (2s,4as,6ar,6br,8as,9r,10r,12as,12bs,14bs)-9-formyl-2,10-dihydroxy-2,6a,6b,9,12a-pentamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8as,11r,12ar,14ar,14br)-4-(hydroxymethyl)-4,6a,6b,8a,11,14b-hexamethyl-11-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid
3-[(1r,3as,3br,5ar,7s,9as,9bs,11r,11as)-3a,11-dihydroxy-7-{[(2r,4s,5s,6r)-4-hydroxy-5-{[(2s,4s,5s,6r)-4-hydroxy-5-{[(2s,4s,5s,6r)-4-hydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one
(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (4as,6as,6br,8ar,9r,10r,11r,12ar,12br,14bs)-10,11-dihydroxy-9-(hydroxymethyl)-6a,6b,9,12a-tetramethyl-2-methylidene-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
(2s,3s,4s,5r,6r)-6-{[(3s,4r,4ar,6ar,6bs,8as,12as,14ar,14br)-4-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,5-dihydroxy-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid
(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8r,8ar,12as,14ar,14br)-8a-({[(2s,3r,4s,5r)-3,5-dihydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}carbonyl)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid
3-[(1r,2s,3as,3br,5ar,7s,9as,9bs,11ar)-2,3a-dihydroxy-7-{[(2r,4s,5s,6r)-4-hydroxy-5-{[(2s,4s,5s,6r)-4-hydroxy-5-{[(2s,4s,5s,6r)-4-hydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one
6-{[9-(acetyloxy)-7,8-dihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-10-(propanoyloxy)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4-dihydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid
(2s,3r,4s,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-({[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}carbonyl)-2-hydroxy-4,6a,6b,11,11,14b-hexamethyl-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid
(2s,3s,4s,5r,6r)-6-{[(2s,3r,4ar,6ar,6bs,8as,12as,14ar,14br)-2-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid
3-(3a,11-dihydroxy-7-{[4-hydroxy-5-({4-hydroxy-5-[(4-hydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)-6-methyloxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl)-5h-furan-2-one
2α,3β,23-trihydroxy-30-norolean-12-en-28-oicacid o-α-l-rhamnopyranosyl-(1→4)-o-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosylester
{"Ingredient_id": "HBIN005206","Ingredient_name": "2\u03b1,3\u03b2,23-trihydroxy-30-norolean-12-en-28-oicacid o-\u03b1-l-rhamnopyranosyl-(1\u21924)-o-\u03b2-d-glucopyranosyl-(1\u21926)-\u03b2-d-glucopyranosylester","Alias": "NA","Ingredient_formula": "C47H74O19","Ingredient_Smile": "CC1C(C(CC(O1)OC2CCC3(C(C2)CCC4C3CC(C5(C4(CCC5C6=CC(=O)OC6)O)C)O)C)O)OC7CC(C(C(O7)C)OC8CC(C(C(O8)C)OC9C(C(C(C(O9)CO)O)O)O)O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "21798","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
acanjaposide c
{"Ingredient_id": "HBIN014325","Ingredient_name": "acanjaposide c","Alias": "NA","Ingredient_formula": "C47H74O19","Ingredient_Smile": "CC1C(C(C(C(O1)OC2C(OC(C(C2O)O)OCC3C(C(C(C(O3)OC(=O)C45CCC(CC4C6=CCC7C8(CCC(C(C8CCC7(C6(CC5)C)C)(C)C=O)O)C)(C)O)O)O)O)CO)O)O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "66","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
aquilegioside a
{"Ingredient_id": "HBIN016547","Ingredient_name": "aquilegioside a","Alias": "NA","Ingredient_formula": "C47H74O19","Ingredient_Smile": "CC1C=CC(OC1=O)C(C)C2C(CC3(C2(CCC45C3CCC6C4(C5)CCC(C6(C)CO)OC7C(C(C(CO7)O)O)OC8C(C(C(C(O8)COC9C(C(C(C(O9)CO)O)O)O)O)O)O)C)C)O","Ingredient_weight": "943.1 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "1542","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "100978845","DrugBank_id": "NA"}