Exact Mass: 920.4757

Exact Mass Matches: 920.4757

Found 33 metabolites which its exact mass value is equals to given mass value 920.4757, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

PGP(a-17:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

[(2S)-3-({[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-[(14-methylhexadecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C45H78O15P2 (920.4816)


PGP(a-17:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-17:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one 14-methylhexadecanoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/a-17:0)

[(2S)-3-({[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-[(14-methylhexadecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C45H78O15P2 (920.4816)


PGP(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/a-17:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/a-17:0), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of 14-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(a-17:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

[(2S)-3-({[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-[(14-methylhexadecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C45H78O15P2 (920.4816)


PGP(a-17:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-17:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one 14-methylhexadecanoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/a-17:0)

[(2S)-3-({[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-[(14-methylhexadecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C45H78O15P2 (920.4816)


PGP(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/a-17:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/a-17:0), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of 14-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-17:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

[(2S)-3-({[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-[(15-methylhexadecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C45H78O15P2 (920.4816)


PGP(i-17:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-17:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one 15-methylhexadecanoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-17:0)

[(2S)-3-({[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-[(15-methylhexadecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C45H78O15P2 (920.4816)


PGP(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-17:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-17:0), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of 15-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-17:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

[(2S)-3-({[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-[(15-methylhexadecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C45H78O15P2 (920.4816)


PGP(i-17:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-17:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one 15-methylhexadecanoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-17:0)

[(2S)-3-({[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-[(15-methylhexadecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C45H78O15P2 (920.4816)


PGP(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-17:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-17:0), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of 15-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

(23E)-cholesta-5,23-diene-1beta,3beta,16beta,25-tetrol 1-O-beta-D-glucopyranoside 16-O-(2-O-3,4,5-trimethoxybenzoyl-alpha-L-arabinopyranoside)

(23E)-cholesta-5,23-diene-1beta,3beta,16beta,25-tetrol 1-O-beta-D-glucopyranoside 16-O-(2-O-3,4,5-trimethoxybenzoyl-alpha-L-arabinopyranoside)

C48H72O17 (920.4769)


   

O,O-BIS(DIETHOXYPHOSPHORYL)-TERT-BUTYLCALIX[4!ARENE

O,O-BIS(DIETHOXYPHOSPHORYL)-TERT-BUTYLCALIX[4!ARENE

C52H74O10P2 (920.4757)


   

PGP(a-17:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PGP(a-17:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C45H78O15P2 (920.4816)


   

PGP(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/a-17:0)

PGP(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/a-17:0)

C45H78O15P2 (920.4816)


   

PGP(a-17:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PGP(a-17:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C45H78O15P2 (920.4816)


   

PGP(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/a-17:0)

PGP(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/a-17:0)

C45H78O15P2 (920.4816)


   

PGP(i-17:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PGP(i-17:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C45H78O15P2 (920.4816)


   

PGP(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-17:0)

PGP(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-17:0)

C45H78O15P2 (920.4816)


   

PGP(i-17:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PGP(i-17:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C45H78O15P2 (920.4816)


   

PGP(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-17:0)

PGP(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-17:0)

C45H78O15P2 (920.4816)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(7E,9Z,11Z,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (Z)-octadec-11-enoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(7E,9Z,11Z,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (Z)-octadec-11-enoate

C45H78O15P2 (920.4816)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-(2-hydroxy-3-tetradecanoyloxypropoxy)phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-(2-hydroxy-3-tetradecanoyloxypropoxy)phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C45H78O15P2 (920.4816)


   

[3-[[3-[(3-hexadecanoyloxy-2-hydroxypropoxy)-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (7E,9E,11Z,13E,15E,17Z)-icosa-7,9,11,13,15,17-hexaenoate

[3-[[3-[(3-hexadecanoyloxy-2-hydroxypropoxy)-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (7E,9E,11Z,13E,15E,17Z)-icosa-7,9,11,13,15,17-hexaenoate

C45H78O15P2 (920.4816)


   

[3-[[3-[[3-[(7Z,9Z,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (11Z,14Z)-icosa-11,14-dienoate

[3-[[3-[[3-[(7Z,9Z,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (11Z,14Z)-icosa-11,14-dienoate

C45H78O15P2 (920.4816)


   

[3-[[3-[[3-[(9Z,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (8Z,11Z,14Z)-icosa-8,11,14-trienoate

[3-[[3-[[3-[(9Z,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (8Z,11Z,14Z)-icosa-8,11,14-trienoate

C45H78O15P2 (920.4816)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(9Z,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (10E,12E)-octadeca-10,12-dienoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(9Z,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (10E,12E)-octadeca-10,12-dienoate

C45H78O15P2 (920.4816)


   

[3-[[3-[[3-[(5E,7Z,9Z,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (E)-icos-11-enoate

[3-[[3-[[3-[(5E,7Z,9Z,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (E)-icos-11-enoate

C45H78O15P2 (920.4816)


   

[3-[[3-[[3-[(Z)-hexadec-7-enoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[3-[[3-[[3-[(Z)-hexadec-7-enoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C45H78O15P2 (920.4816)


   

[3-[[3-[[3-[(4E,7Z)-hexadeca-4,7-dienoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

[3-[[3-[[3-[(4E,7Z)-hexadeca-4,7-dienoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

C45H78O15P2 (920.4816)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C45H78O15P2 (920.4816)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (11E,13E,15E)-octadeca-11,13,15-trienoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (11E,13E,15E)-octadeca-11,13,15-trienoate

C45H78O15P2 (920.4816)


   
   

GR 64349

GR 64349

C42H68N10O11S (920.4789)


GR 64349 is a potent and highly selective NK2 receptor peptide antagonist, with an EC50 of 3.7 nM in rat colon. GR 64349 exhibits selectivity >1000 and >300-fold with respect to NK1 and NK3 receptors, respectively[1][2].

   

4,5-dihydroxy-2-{[7-hydroxy-1-(6-hydroxy-6-methylhept-4-en-2-yl)-9a,11a-dimethyl-9-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl]oxy}oxan-3-yl 3,4,5-trimethoxybenzoate

4,5-dihydroxy-2-{[7-hydroxy-1-(6-hydroxy-6-methylhept-4-en-2-yl)-9a,11a-dimethyl-9-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl]oxy}oxan-3-yl 3,4,5-trimethoxybenzoate

C48H72O17 (920.4769)


   

(2s,3r,4s,5s)-2-{[(1r,2s,3as,3bs,7r,9r,9ar,9bs,11as)-7-hydroxy-1-[(2r,4e)-6-hydroxy-6-methylhept-4-en-2-yl]-9a,11a-dimethyl-9-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl]oxy}-4,5-dihydroxyoxan-3-yl 3,4,5-trimethoxybenzoate

(2s,3r,4s,5s)-2-{[(1r,2s,3as,3bs,7r,9r,9ar,9bs,11as)-7-hydroxy-1-[(2r,4e)-6-hydroxy-6-methylhept-4-en-2-yl]-9a,11a-dimethyl-9-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl]oxy}-4,5-dihydroxyoxan-3-yl 3,4,5-trimethoxybenzoate

C48H72O17 (920.4769)