Exact Mass: 903.638

Exact Mass Matches: 903.638

Found 103 metabolites which its exact mass value is equals to given mass value 903.638, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

PC(22:1(13Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

(2-{[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C52H90NO9P (903.6353)


PC(22:1(13Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:1(13Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one 13Z-docosenoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:1(13Z))

(2-{[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C52H90NO9P (903.6353)


PC(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:1(13Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:1(13Z)), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of 13Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:1(13Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

(2-{[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C52H90NO9P (903.6353)


PC(22:1(13Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:1(13Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one 13Z-docosenoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:1(13Z))

(2-{[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C52H90NO9P (903.6353)


PC(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:1(13Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:1(13Z)), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of 13Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:1(13Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

(2-{[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C52H90NO9P (903.6353)


PC(22:1(13Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:1(13Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one 13Z-docosenoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:1(13Z))

(2-{[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C52H90NO9P (903.6353)


PC(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:1(13Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:1(13Z)), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of 13Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:1(13Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

(2-{[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C52H90NO9P (903.6353)


PC(22:1(13Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:1(13Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one 13Z-docosenoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:1(13Z))

(2-{[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C52H90NO9P (903.6353)


PC(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:1(13Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:1(13Z)), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of 13Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:1(13Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

(2-{[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C52H90NO9P (903.6353)


PC(22:1(13Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:1(13Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one 13Z-docosenoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:1(13Z))

(2-{[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C52H90NO9P (903.6353)


PC(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:1(13Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:1(13Z)), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of 13Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:1(13Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

PC(22:1(13Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

C52H90NO9P (903.6353)


   

PC(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:1(13Z))

PC(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:1(13Z))

C52H90NO9P (903.6353)


   

PC(22:1(13Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

PC(22:1(13Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

C52H90NO9P (903.6353)


   

PC(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:1(13Z))

PC(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:1(13Z))

C52H90NO9P (903.6353)


   

PC(22:1(13Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

PC(22:1(13Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

C52H90NO9P (903.6353)


   

PC(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:1(13Z))

PC(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:1(13Z))

C52H90NO9P (903.6353)


   

PC(22:1(13Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

PC(22:1(13Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

C52H90NO9P (903.6353)


   

PC(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:1(13Z))

PC(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:1(13Z))

C52H90NO9P (903.6353)


   

PC(22:1(13Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

PC(22:1(13Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

C52H90NO9P (903.6353)


   

PC(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:1(13Z))

PC(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:1(13Z))

C52H90NO9P (903.6353)


   

SHexCer 18:1;2O/25:1

SHexCer 18:1;2O/25:1

C49H93NO11S (903.6469)


   

2-amino-3-[[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C52H90NO9P (903.6353)


   

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C52H90NO9P (903.6353)


   

2-amino-3-[[3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]-2-[(Z)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]-2-[(Z)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C52H90NO9P (903.6353)


   

2-amino-3-[[3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C52H90NO9P (903.6353)


   

2-amino-3-[[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C52H90NO9P (903.6353)


   

2-amino-3-[[2-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C52H90NO9P (903.6353)


   

2-amino-3-[[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C52H90NO9P (903.6353)


   

2-amino-3-[[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C52H90NO9P (903.6353)


   

2-amino-3-[[2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C52H90NO9P (903.6353)


   

2-amino-3-[[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-[(Z)-icos-11-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-[(Z)-icos-11-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C52H90NO9P (903.6353)


   

2-amino-3-[[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-[(Z)-tetracos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-[(Z)-tetracos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C52H90NO9P (903.6353)


   

2-amino-3-[[2-[(Z)-docos-13-enoyl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(Z)-docos-13-enoyl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C52H90NO9P (903.6353)


   

2-amino-3-[[3-[(15Z,18Z)-hexacosa-15,18-dienoxy]-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(15Z,18Z)-hexacosa-15,18-dienoxy]-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C52H90NO9P (903.6353)


   

2-amino-3-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-tetracos-13-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-tetracos-13-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C52H90NO9P (903.6353)


   

2-amino-3-[[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-icosoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-icosoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C52H90NO9P (903.6353)


   

2-amino-3-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C52H90NO9P (903.6353)


   

2-amino-3-[[2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C52H90NO9P (903.6353)


   

2-amino-3-[[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C52H90NO9P (903.6353)


   

2-amino-3-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C52H90NO9P (903.6353)


   

2-amino-3-[[3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C52H90NO9P (903.6353)


   

2-amino-3-[[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-2-icosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-2-icosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C52H90NO9P (903.6353)


   

2-amino-3-[[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C52H90NO9P (903.6353)


   

2-amino-3-[[3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C52H90NO9P (903.6353)


   

2-amino-3-[[3-[(Z)-docos-13-enoxy]-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(Z)-docos-13-enoxy]-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C52H90NO9P (903.6353)


   
   

SHexCer 29:1;2O/14:1

SHexCer 29:1;2O/14:1

C49H93NO11S (903.6469)


   

SHexCer 27:0;2O/16:2

SHexCer 27:0;2O/16:2

C49H93NO11S (903.6469)


   

SHexCer 17:1;2O/26:1

SHexCer 17:1;2O/26:1

C49H93NO11S (903.6469)


   

SHexCer 25:1;2O/18:1

SHexCer 25:1;2O/18:1

C49H93NO11S (903.6469)


   

SHexCer 20:1;2O/23:1

SHexCer 20:1;2O/23:1

C49H93NO11S (903.6469)


   

SHexCer 19:0;2O/24:2

SHexCer 19:0;2O/24:2

C49H93NO11S (903.6469)


   

SHexCer 17:0;2O/26:2

SHexCer 17:0;2O/26:2

C49H93NO11S (903.6469)


   

SHexCer 27:1;2O/16:1

SHexCer 27:1;2O/16:1

C49H93NO11S (903.6469)


   

SHexCer 15:0;2O/28:2

SHexCer 15:0;2O/28:2

C49H93NO11S (903.6469)


   

SHexCer 19:1;2O/24:1

SHexCer 19:1;2O/24:1

C49H93NO11S (903.6469)


   

SHexCer 30:1;2O/13:1

SHexCer 30:1;2O/13:1

C49H93NO11S (903.6469)


   

SHexCer 22:1;2O/21:1

SHexCer 22:1;2O/21:1

C49H93NO11S (903.6469)


   

SHexCer 24:1;2O/19:1

SHexCer 24:1;2O/19:1

C49H93NO11S (903.6469)


   

SHexCer 25:0;2O/18:2

SHexCer 25:0;2O/18:2

C49H93NO11S (903.6469)


   

SHexCer 23:1;2O/20:1

SHexCer 23:1;2O/20:1

C49H93NO11S (903.6469)


   

SHexCer 21:1;2O/22:1

SHexCer 21:1;2O/22:1

C49H93NO11S (903.6469)


   

SHexCer 23:0;2O/20:2

SHexCer 23:0;2O/20:2

C49H93NO11S (903.6469)


   

SHexCer 15:1;2O/28:1

SHexCer 15:1;2O/28:1

C49H93NO11S (903.6469)


   

SHexCer 28:1;2O/15:1

SHexCer 28:1;2O/15:1

C49H93NO11S (903.6469)


   

SHexCer 21:0;2O/22:2

SHexCer 21:0;2O/22:2

C49H93NO11S (903.6469)


   

SHexCer 16:1;2O/27:1

SHexCer 16:1;2O/27:1

C49H93NO11S (903.6469)


   

2-[[(4E,8E,12E)-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-6,9,12,15,18,21,24,27,30,33-decaenoyl]amino]-3-hydroxytetradeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E,12E)-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-6,9,12,15,18,21,24,27,30,33-decaenoyl]amino]-3-hydroxytetradeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C55H88N2O6P+ (903.638)


   

2-[[(E)-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z,36Z,39Z)-dotetraconta-6,9,12,15,18,21,24,27,30,33,36,39-dodecaenoyl]amino]-3-hydroxyoct-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E)-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z,36Z,39Z)-dotetraconta-6,9,12,15,18,21,24,27,30,33,36,39-dodecaenoyl]amino]-3-hydroxyoct-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C55H88N2O6P+ (903.638)


   
   
   
   
   
   

Hex2Cer 14:1;O2/22:1;O

Hex2Cer 14:1;O2/22:1;O

C48H89NO14 (903.6283)


   

Hex2Cer 14:2;O2/22:0;O

Hex2Cer 14:2;O2/22:0;O

C48H89NO14 (903.6283)


   

Hex2Cer 15:2;O2/21:0;O

Hex2Cer 15:2;O2/21:0;O

C48H89NO14 (903.6283)


   

Hex2Cer 16:1;O2/20:1;O

Hex2Cer 16:1;O2/20:1;O

C48H89NO14 (903.6283)


   

Hex2Cer 16:2;O2/20:0;O

Hex2Cer 16:2;O2/20:0;O

C48H89NO14 (903.6283)


   

Hex2Cer 17:2;O2/19:0;O

Hex2Cer 17:2;O2/19:0;O

C48H89NO14 (903.6283)


   

Hex2Cer 18:1;O2/18:1;O

Hex2Cer 18:1;O2/18:1;O

C48H89NO14 (903.6283)


   

Hex2Cer 18:2;O2/18:0;O

Hex2Cer 18:2;O2/18:0;O

C48H89NO14 (903.6283)


   

Hex2Cer 19:2;O2/17:0;O

Hex2Cer 19:2;O2/17:0;O

C48H89NO14 (903.6283)


   

Hex2Cer 20:2;O2/16:0;O

Hex2Cer 20:2;O2/16:0;O

C48H89NO14 (903.6283)


   

Hex2Cer 21:2;O2/15:0;O

Hex2Cer 21:2;O2/15:0;O

C48H89NO14 (903.6283)


   

Hex2Cer 22:2;O2/14:0;O

Hex2Cer 22:2;O2/14:0;O

C48H89NO14 (903.6283)


   

Hex2Cer 36:2;O2;O

Hex2Cer 36:2;O2;O

C48H89NO14 (903.6283)


   

Hex2Cer 36:2;O3

Hex2Cer 36:2;O3

C48H89NO14 (903.6283)


   

LacCer 14:1;O2/22:1;O

LacCer 14:1;O2/22:1;O

C48H89NO14 (903.6283)


   

LacCer 14:2;O2/22:0;O

LacCer 14:2;O2/22:0;O

C48H89NO14 (903.6283)


   

LacCer 15:2;O2/21:0;O

LacCer 15:2;O2/21:0;O

C48H89NO14 (903.6283)


   

LacCer 16:1;O2/20:1;O

LacCer 16:1;O2/20:1;O

C48H89NO14 (903.6283)


   

LacCer 16:2;O2/20:0;O

LacCer 16:2;O2/20:0;O

C48H89NO14 (903.6283)


   

LacCer 17:2;O2/19:0;O

LacCer 17:2;O2/19:0;O

C48H89NO14 (903.6283)


   

LacCer 18:1;O2/18:1;O

LacCer 18:1;O2/18:1;O

C48H89NO14 (903.6283)


   

LacCer 18:2;O2/18:0;O

LacCer 18:2;O2/18:0;O

C48H89NO14 (903.6283)


   

LacCer 19:2;O2/17:0;O

LacCer 19:2;O2/17:0;O

C48H89NO14 (903.6283)


   

LacCer 20:2;O2/16:0;O

LacCer 20:2;O2/16:0;O

C48H89NO14 (903.6283)


   

LacCer 21:2;O2/15:0;O

LacCer 21:2;O2/15:0;O

C48H89NO14 (903.6283)


   

LacCer 22:2;O2/14:0;O

LacCer 22:2;O2/14:0;O

C48H89NO14 (903.6283)


   

LacCer 36:2;O2;O

LacCer 36:2;O2;O

C48H89NO14 (903.6283)