Exact Mass: 900.4788537999999

Exact Mass Matches: 900.4788537999999

Found 96 metabolites which its exact mass value is equals to given mass value 900.4788537999999, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

26-Desglucoavenacoside A

2-{[4-hydroxy-2-(hydroxymethyl)-6-[5-(hydroxymethyl)-5,7,9,13-tetramethyl-5-oxaspiro[oxolane-2,6-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18-eneoxy]-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O18 (900.4718412)


26-Desglucoavenacoside A is found in cereals and cereal products. 26-Desglucoavenacoside A is a constituent of Avena sativa (oats). Constituent of Avena sativa (oats). 26-Desglucoavenacoside A is found in oat and cereals and cereal products.

   

Fistuloside B

2-{[3-hydroxy-2-(hydroxymethyl)-6-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18-en-15-oloxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C45H72O18 (900.4718412)


Fistuloside B is found in onion-family vegetables. Fistuloside B is a constituent of Allium fistulosum (Welsh onion). Constituent of Allium fistulosum (Welsh onion). Fistuloside B is found in onion-family vegetables.

   

PGP(16:0/PGF2alpha)

[(2S)-3-({[(2R)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-(hexadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H78O16P2 (900.4764848)


PGP(16:0/PGF2alpha) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:0/PGF2alpha), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(PGF2alpha/16:0)

[(2S)-3-({[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-(hexadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H78O16P2 (900.4764848)


PGP(PGF2alpha/16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGF2alpha/16:0), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(16:0/PGE1)

[(2S)-3-({[(2R)-3-(hexadecanoyloxy)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H78O16P2 (900.4764848)


PGP(16:0/PGE1) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:0/PGE1), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(PGE1/16:0)

[(2S)-3-({[(2R)-2-(hexadecanoyloxy)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H78O16P2 (900.4764848)


PGP(PGE1/16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGE1/16:0), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(16:0/PGD1)

[(2S)-3-({[(2R)-3-(hexadecanoyloxy)-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H78O16P2 (900.4764848)


PGP(16:0/PGD1) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:0/PGD1), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(PGD1/16:0)

[(2S)-3-({[(2R)-2-(hexadecanoyloxy)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H78O16P2 (900.4764848)


PGP(PGD1/16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGD1/16:0), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(16:1(9Z)/PGF1alpha)

[(2S)-3-({[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-[(9Z)-hexadec-9-enoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H78O16P2 (900.4764848)


PGP(16:1(9Z)/PGF1alpha) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:1(9Z)/PGF1alpha), in particular, consists of one chain of one 9Z-hexadecenoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(PGF1alpha/16:1(9Z))

[(2S)-3-({[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-[(9Z)-hexadec-9-enoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H78O16P2 (900.4764848)


PGP(PGF1alpha/16:1(9Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGF1alpha/16:1(9Z)), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of 9Z-hexadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:0/5-iso PGF2VI)

[(2S)-3-({[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-(octadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H78O16P2 (900.4764848)


PGP(18:0/5-iso PGF2VI) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:0/5-iso PGF2VI), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(5-iso PGF2VI/18:0)

[(2S)-3-({[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-(octadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H78O16P2 (900.4764848)


PGP(5-iso PGF2VI/18:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(5-iso PGF2VI/18:0), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(PGF2alpha/i-16:0)

[(2S)-3-({[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-[(14-methylpentadecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H78O16P2 (900.4764848)


PGP(PGF2alpha/i-16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGF2alpha/i-16:0), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-16:0/PGE1)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-3-[(14-methylpentadecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C42H78O16P2 (900.4764848)


PGP(i-16:0/PGE1) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-16:0/PGE1), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(PGE1/i-16:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-2-[(14-methylpentadecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C42H78O16P2 (900.4764848)


PGP(PGE1/i-16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGE1/i-16:0), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-16:0/PGD1)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-3-[(14-methylpentadecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C42H78O16P2 (900.4764848)


PGP(i-16:0/PGD1) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-16:0/PGD1), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(PGD1/i-16:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-2-[(14-methylpentadecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C42H78O16P2 (900.4764848)


PGP(PGD1/i-16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGD1/i-16:0), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-18:0/5-iso PGF2VI)

[(2S)-3-({[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-[(16-methylheptadecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H78O16P2 (900.4764848)


PGP(i-18:0/5-iso PGF2VI) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-18:0/5-iso PGF2VI), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(5-iso PGF2VI/i-18:0)

[(2S)-3-({[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-[(16-methylheptadecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H78O16P2 (900.4764848)


PGP(5-iso PGF2VI/i-18:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(5-iso PGF2VI/i-18:0), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

Spirostane + 2O, -2H, O-Hex-dHex-dHex

Spirostane + 2O, -2H, O-Hex-dHex-dHex

C45H72O18 (900.4718412)


Annotation level-3

   
   
   
   
   
   

Furostane base -1H2O -2H + 1O, O-Hex, O-Hex-dHex

Furostane base -1H2O -2H + 1O, O-Hex, O-Hex-dHex

C45H72O18 (900.4718412)


Annotation level-3

   

26-O-??-D-Glucopyranosyl-3??,26-dihydroxy-?藛5-choleslen-16,22-dioxo-3-O-??-L-rhamnopyranosyl-(1鈥樏傗垎2)-??-D-glucopyranoside

26-O-??-D-Glucopyranosyl-3??,26-dihydroxy-?藛5-choleslen-16,22-dioxo-3-O-??-L-rhamnopyranosyl-(1鈥樏傗垎2)-??-D-glucopyranoside

C45H72O18 (900.4718412)


   

3-O-[alpha-L-rhamnopyranosyl(1->2)]-[beta-D-glucopyranosyl(1->4)]-beta-D-glucopyranosyl pennogenin

3-O-[alpha-L-rhamnopyranosyl(1->2)]-[beta-D-glucopyranosyl(1->4)]-beta-D-glucopyranosyl pennogenin

C45H72O18 (900.4718412)


   

3beta-[(beta-D-glucopyranosyl)oxy)]-17alpha-hydroxy-16beta-[(O-beta-D-xylopyranosyl)-(1->3)-2-O-acetyl-alpha-L-arabinopyranosyl)oxy]cholest-5-en-22-one|3beta-[(beta-D-glucopyranosyl)oxy]-17alpha-hydroxy-16beta-[(O-beta-D-xylopyranosyl-(1->2)-2-O-acetyl-alpha-L-arabinopyranosyl)oxy]cholest-5-en-22-one

3beta-[(beta-D-glucopyranosyl)oxy)]-17alpha-hydroxy-16beta-[(O-beta-D-xylopyranosyl)-(1->3)-2-O-acetyl-alpha-L-arabinopyranosyl)oxy]cholest-5-en-22-one|3beta-[(beta-D-glucopyranosyl)oxy]-17alpha-hydroxy-16beta-[(O-beta-D-xylopyranosyl-(1->2)-2-O-acetyl-alpha-L-arabinopyranosyl)oxy]cholest-5-en-22-one

C45H72O18 (900.4718412)


   
   

(25S)-17alpha-25-dihydroxyspirost-5-en-3beta-yl-O-alpha-L-rhamnopyranosyl-(1->3)-[alpha-L-rhamnopyranosyl-(1->2)]-beta-D-glucopyranoside|diosbulbiside B

(25S)-17alpha-25-dihydroxyspirost-5-en-3beta-yl-O-alpha-L-rhamnopyranosyl-(1->3)-[alpha-L-rhamnopyranosyl-(1->2)]-beta-D-glucopyranoside|diosbulbiside B

C45H72O18 (900.4718412)


   

(25S)-spirost-5-en-3beta,17alpha,27-triol 3-O-[alpha-L-rhamnopyranosyl-(1->2)]-[alpha-L-rhamnopyranosyl-(1->4)]-beta-D-glucopyranoside|(25S)spirost-5-en-3beta,17alpha,27-triol-3-O-2)> 4)>-beta-D-glucopyranoside|(25S)spirost-5-en-3beta,17alpha,27-triol-3-O-[alpha-L-rhamno-pyranosyl(1->2)] [alpha-L-rhamno-pyranosyl(1->4)]-beta-D-glucopyranoside

(25S)-spirost-5-en-3beta,17alpha,27-triol 3-O-[alpha-L-rhamnopyranosyl-(1->2)]-[alpha-L-rhamnopyranosyl-(1->4)]-beta-D-glucopyranoside|(25S)spirost-5-en-3beta,17alpha,27-triol-3-O-2)> 4)>-beta-D-glucopyranoside|(25S)spirost-5-en-3beta,17alpha,27-triol-3-O-[alpha-L-rhamno-pyranosyl(1->2)] [alpha-L-rhamno-pyranosyl(1->4)]-beta-D-glucopyranoside

C45H72O18 (900.4718412)


   

(22S,25S)-26-O-beta-D-glucopyranosyl-22,25-epoxyfurost-5-en-3beta,26-diol 3-O-2)>-beta-glucopyranoside|(22S,25S)-26-O-beta-D-glucopyranosyl-22,25-epoxyfurost-5-en-3beta,26-diol 3-O-[alpha-L-rhamnopyranosyl(1->2)]-beta-glucopyranoside

(22S,25S)-26-O-beta-D-glucopyranosyl-22,25-epoxyfurost-5-en-3beta,26-diol 3-O-2)>-beta-glucopyranoside|(22S,25S)-26-O-beta-D-glucopyranosyl-22,25-epoxyfurost-5-en-3beta,26-diol 3-O-[alpha-L-rhamnopyranosyl(1->2)]-beta-glucopyranoside

C45H72O18 (900.4718412)


   
   

(25R,26R)-3beta-{beta-D-glucopyranosyl-(1->4)-[alpha-L-rhamnopyranosyl-(1->2)]-beta-D-glucopyranosyloxy}spirost-5-en-26-ol

(25R,26R)-3beta-{beta-D-glucopyranosyl-(1->4)-[alpha-L-rhamnopyranosyl-(1->2)]-beta-D-glucopyranosyloxy}spirost-5-en-26-ol

C45H72O18 (900.4718412)


   
   

(24S,25R)-spirost-5-en-3beta,14alpha,24beta-triol 3-O-alpha-L-rhamnopyranosyl-(1,2)-[alpha-L-rhamnopyranosyl-(1,4)]-beta-D-glucopyranoside|dracaenoside K

(24S,25R)-spirost-5-en-3beta,14alpha,24beta-triol 3-O-alpha-L-rhamnopyranosyl-(1,2)-[alpha-L-rhamnopyranosyl-(1,4)]-beta-D-glucopyranoside|dracaenoside K

C45H72O18 (900.4718412)


   
   

ruscogenin 1-O-[O-beta-D-glucopyranosyl-(1->3)-O-alpha-L-rhamnopyranosyl-(1->2)-beta-D-galactopyranoside]

ruscogenin 1-O-[O-beta-D-glucopyranosyl-(1->3)-O-alpha-L-rhamnopyranosyl-(1->2)-beta-D-galactopyranoside]

C45H72O18 (900.4718412)


   

5beta-spirost-25(27)-en-3beta-ol 3-O-beta-D-glucopyranosyl-(1->3)-[beta-D-glucopyranosyl-(1->2)]-beta-D-glucopyranoside|schidigera-saponin A3

5beta-spirost-25(27)-en-3beta-ol 3-O-beta-D-glucopyranosyl-(1->3)-[beta-D-glucopyranosyl-(1->2)]-beta-D-glucopyranoside|schidigera-saponin A3

C45H72O18 (900.4718412)


   

24alpha-hydroxypennogenin 3-O-alpha-L-rhamnopyranosyl-(1->2)-[alpha-L-rhamnopyranosyl-(1->3)]-beta-D-glucopyranoside|arboreasaponin B

24alpha-hydroxypennogenin 3-O-alpha-L-rhamnopyranosyl-(1->2)-[alpha-L-rhamnopyranosyl-(1->3)]-beta-D-glucopyranoside|arboreasaponin B

C45H72O18 (900.4718412)


   
   

26-O-beta-D-glucopyranosylnuatigenin 3-O-alpha-L-rhamnopyranosyl-(1?2)-beta-D-glucopyranoside

26-O-beta-D-glucopyranosylnuatigenin 3-O-alpha-L-rhamnopyranosyl-(1?2)-beta-D-glucopyranoside

C45H72O18 (900.4718412)


   

(25S)-spirost-5-ene-3beta,27-diol 3-O-[O-alpha-L-rhamnopyranosyl-(1-2)-O-(beta-D-glucopyranosyl-(1-4))-beta-D-glucopyranoside]|isonarthogenin 3-O-2)-O-4)>-beta-D-glucopyranoside>

(25S)-spirost-5-ene-3beta,27-diol 3-O-[O-alpha-L-rhamnopyranosyl-(1-2)-O-(beta-D-glucopyranosyl-(1-4))-beta-D-glucopyranoside]|isonarthogenin 3-O-2)-O-4)>-beta-D-glucopyranoside>

C45H72O18 (900.4718412)


   

22-O-methyldeglucoruscoside

22-O-methyldeglucoruscoside

C45H72O18 (900.4718412)


   

(25S)-17alpha,25-dihydroxyspirost-5-en-3beta-yl-O-alpha-L-rhamnopyranosyl-(1?4)-alpha-L-rhamnopyranosyl-(1?4)-beta-D-glucopyranoside|dioscoreanoside A

(25S)-17alpha,25-dihydroxyspirost-5-en-3beta-yl-O-alpha-L-rhamnopyranosyl-(1?4)-alpha-L-rhamnopyranosyl-(1?4)-beta-D-glucopyranoside|dioscoreanoside A

C45H72O18 (900.4718412)


   

(3beta,25S)-spirost-5-en-3-yl O-beta-D-glucopyranosyl-(1?3)-O-beta-D-glucopyranosyl-(1?4)-beta-D-galactopyranoside|elephanoside G

(3beta,25S)-spirost-5-en-3-yl O-beta-D-glucopyranosyl-(1?3)-O-beta-D-glucopyranosyl-(1?4)-beta-D-galactopyranoside|elephanoside G

C45H72O18 (900.4718412)


   

(3beta,17beta,25R)-spirost-5-ene-3,17-diol-3-O-beta-D-glucopyranosyl-(1->3)-[alpha-L-rhamnopyranosyl-(1->2)]-beta-D-glucopyranoside

(3beta,17beta,25R)-spirost-5-ene-3,17-diol-3-O-beta-D-glucopyranosyl-(1->3)-[alpha-L-rhamnopyranosyl-(1->2)]-beta-D-glucopyranoside

C45H72O18 (900.4718412)


   

3-O-[alpha-L-rhamnopyranosyl-(1->4)-beta-D-glucopyranosyl]-26-O-beta-D-glucopyranosyl-25(R)-furosta-5,22(23)-dien-3b,20alpha,26-triol

3-O-[alpha-L-rhamnopyranosyl-(1->4)-beta-D-glucopyranosyl]-26-O-beta-D-glucopyranosyl-25(R)-furosta-5,22(23)-dien-3b,20alpha,26-triol

C45H72O18 (900.4718412)


   

laxogenin 3-O-alpha-L-rhamnopyranosyl-(1?2)-[beta-D-glucopyranosyl-(1?4)]-beta-D-glucopyranoside

laxogenin 3-O-alpha-L-rhamnopyranosyl-(1?2)-[beta-D-glucopyranosyl-(1?4)]-beta-D-glucopyranoside

C45H72O18 (900.4718412)


   

archazolid E|archazolide A-15-O-beta-D-glucopyranoside

archazolid E|archazolide A-15-O-beta-D-glucopyranoside

C48H72N2O12S (900.4805712000001)


   

3-O-alpha-L-rhamnopyranosyl-(1->2)-[alpha-L-rhamnopyranosyl-(1->4)]-beta-D-glucopyranosyl (22R,23S,25R,26R)-spirost-5-ene-3beta,23,26-triol|3-O-beta-chacotriosyl (22R,23S,25R,26R)-3beta,23,26-trihydroxyspirost-5-ene|3-O-[alpha-L-rhamnopyranosyl-(1->4)]-alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranosyl (22R,23S,25R,26R)-3beta,23,26-trihydroxyspirost-5-ene|anguivioside I|beta-chacotriosyl (22R,23S,25R,26R)-spirost-5-ene-3beta,23,26-triol

3-O-alpha-L-rhamnopyranosyl-(1->2)-[alpha-L-rhamnopyranosyl-(1->4)]-beta-D-glucopyranosyl (22R,23S,25R,26R)-spirost-5-ene-3beta,23,26-triol|3-O-beta-chacotriosyl (22R,23S,25R,26R)-3beta,23,26-trihydroxyspirost-5-ene|3-O-[alpha-L-rhamnopyranosyl-(1->4)]-alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranosyl (22R,23S,25R,26R)-3beta,23,26-trihydroxyspirost-5-ene|anguivioside I|beta-chacotriosyl (22R,23S,25R,26R)-spirost-5-ene-3beta,23,26-triol

C45H72O18 (900.4718412)


   

3beta,26,27-trihydroxycholest-5-ene-16,22-dione 3-O-alpha-L-rhamnopyranosyl-(1->2)-[alpha-L-rhamnopyranosyl-(1->4)]-O-beta-D-glucopyranoside|smilaxchinoside D

3beta,26,27-trihydroxycholest-5-ene-16,22-dione 3-O-alpha-L-rhamnopyranosyl-(1->2)-[alpha-L-rhamnopyranosyl-(1->4)]-O-beta-D-glucopyranoside|smilaxchinoside D

C45H72O18 (900.4718412)


   

pennogenin 3-O-2)-O-3)-beta-D-glucopyranoside>|pennogenin 3-O-[O-alpha-L-rhamnopyranosyl-(1-->2)-O-[beta-D-galactopyranosyl-(1-->3)-beta-D-glucopyranoside]

pennogenin 3-O-2)-O-3)-beta-D-glucopyranoside>|pennogenin 3-O-[O-alpha-L-rhamnopyranosyl-(1-->2)-O-[beta-D-galactopyranosyl-(1-->3)-beta-D-glucopyranoside]

C45H72O18 (900.4718412)


   

3-O-(alpha-L-arabinopyranosyl(1->6)-beta-D-glucopyranosyl(1->2)-alpha-L-arabinopyranosyl)-2beta,17,23-trihydroxy-28-norolean-12-en-16-one|3-O-[alpha-L-arabinopyranosyl(1->6)-beta-D-glucopyranosyl(1->2)-alpha-L-arabinopyranosyl]-2beta,17,23-trihydroxy-28-norolean-12-en-16-one

3-O-(alpha-L-arabinopyranosyl(1->6)-beta-D-glucopyranosyl(1->2)-alpha-L-arabinopyranosyl)-2beta,17,23-trihydroxy-28-norolean-12-en-16-one|3-O-[alpha-L-arabinopyranosyl(1->6)-beta-D-glucopyranosyl(1->2)-alpha-L-arabinopyranosyl]-2beta,17,23-trihydroxy-28-norolean-12-en-16-one

C45H72O18 (900.4718412)


   

archazolid C|archazolid-7-O-beta-D-glucopyranoside

archazolid C|archazolid-7-O-beta-D-glucopyranoside

C48H72N2O12S (900.4805712000001)


   

(25R)-Spirost-5-en-3beta,12alpha-diol 3-O-alpha-L-rhamnopyranosyl-(1->2)-O-4)>-beta-D-glucopyranoside|(25R)-Spirost-5-en-3beta,12alpha-diol 3-O-alpha-L-rhamnopyranosyl-(1->2)-O-[beta-D-glucopyranosyl-(1->4)]-beta-D-glucopyranoside

(25R)-Spirost-5-en-3beta,12alpha-diol 3-O-alpha-L-rhamnopyranosyl-(1->2)-O-4)>-beta-D-glucopyranoside|(25R)-Spirost-5-en-3beta,12alpha-diol 3-O-alpha-L-rhamnopyranosyl-(1->2)-O-[beta-D-glucopyranosyl-(1->4)]-beta-D-glucopyranoside

C45H72O18 (900.4718412)


   

beta-chacotriosyl (25R,26R)-spirost-5-en-3beta,17alpha,26-triol|beta-chacotriosyl (25R,26R)-spirost-5-ene-3beta,17alpha,26-triol|SNF-10

beta-chacotriosyl (25R,26R)-spirost-5-en-3beta,17alpha,26-triol|beta-chacotriosyl (25R,26R)-spirost-5-ene-3beta,17alpha,26-triol|SNF-10

C45H72O18 (900.4718412)


   

25(R,S)-dracaenoside H|25(R,S)-spirost-5-en-3beta,14alpha-diol 3-O-alpha-L-rhamnopyranosyl-(1,2)-[beta-D-glucopyranosyl-(1,3)]-beta-D-glucopyranoside

25(R,S)-dracaenoside H|25(R,S)-spirost-5-en-3beta,14alpha-diol 3-O-alpha-L-rhamnopyranosyl-(1,2)-[beta-D-glucopyranosyl-(1,3)]-beta-D-glucopyranoside

C45H72O18 (900.4718412)


   

isonuatigenin-3-O-beta-solatriose

isonuatigenin-3-O-beta-solatriose

C45H72O18 (900.4718412)


   

penogenin 3-O-beta-D-glucopyranosyl-(1->6)-[O-alpha-L-rhamnopyranosyl-(1->2)]-O-beta-D-glucopyranoside|trikamsteroside B

penogenin 3-O-beta-D-glucopyranosyl-(1->6)-[O-alpha-L-rhamnopyranosyl-(1->2)]-O-beta-D-glucopyranoside|trikamsteroside B

C45H72O18 (900.4718412)


   

3-O-alpha-L-rhamnopyranosyl-(1->2)-[beta-D-xylopyranosyl-(1->3)] beta-D-glucopyranosyl (25R,26R)-26-O-methyl-spirost-5-ene-3beta,17alpha,26-triol|SNF-3

3-O-alpha-L-rhamnopyranosyl-(1->2)-[beta-D-xylopyranosyl-(1->3)] beta-D-glucopyranosyl (25R,26R)-26-O-methyl-spirost-5-ene-3beta,17alpha,26-triol|SNF-3

C45H72O18 (900.4718412)


   

26-O-beta-D-glucopyranosyl-22-O-methylfurosta-5,25(27)-diene-1beta,3beta,22xi,26-tetrol 1-O-2)-alpha-L-arabinopyranoside>|26-O-beta-D-glucopyranosyl-22-O-methylfurosta-5,25(27)-diene-1beta,3beta,22xi,26-tetrol 1-O-[O-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranoside]|26-O-beta-D-glucopyranosyl-22-O-methylfurosta-5,25(27)-diene-1beta,3beta,22zeta,26-tetrahydroxy-1-O-alpha-L-rhamnopyranosyl-(1->2)-alpha-L-arabinopyranoside|26-O-beta-D-glucopyranosyl-22alpha-methoxy-furosta-5,25(27)-diene-1beta,3beta,26-triol 1-O-alpha-L-rhamnopyranosyl-(1->2)-O-alpha-L-arabinopyranoside|26-O-beta-D-glucopyranosyl-22alpha-methoxyfurosta-5,25(27)-diene-1beta,3beta,26-triol 1-O-alpha-L-rhamnopyranosyl-(1->2)-O-alpha-L-arabinopyranoside|26-[(beta-D-glucopyranosyl)oxy]-3beta-hydroxy-22alpha-methoxyfurosta-5,25(27)-dien-1beta-yl O-alpha-L-rhamnopyranosyl-(1->2)-alpha-L-arabinopyranoside

26-O-beta-D-glucopyranosyl-22-O-methylfurosta-5,25(27)-diene-1beta,3beta,22xi,26-tetrol 1-O-2)-alpha-L-arabinopyranoside>|26-O-beta-D-glucopyranosyl-22-O-methylfurosta-5,25(27)-diene-1beta,3beta,22xi,26-tetrol 1-O-[O-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranoside]|26-O-beta-D-glucopyranosyl-22-O-methylfurosta-5,25(27)-diene-1beta,3beta,22zeta,26-tetrahydroxy-1-O-alpha-L-rhamnopyranosyl-(1->2)-alpha-L-arabinopyranoside|26-O-beta-D-glucopyranosyl-22alpha-methoxy-furosta-5,25(27)-diene-1beta,3beta,26-triol 1-O-alpha-L-rhamnopyranosyl-(1->2)-O-alpha-L-arabinopyranoside|26-O-beta-D-glucopyranosyl-22alpha-methoxyfurosta-5,25(27)-diene-1beta,3beta,26-triol 1-O-alpha-L-rhamnopyranosyl-(1->2)-O-alpha-L-arabinopyranoside|26-[(beta-D-glucopyranosyl)oxy]-3beta-hydroxy-22alpha-methoxyfurosta-5,25(27)-dien-1beta-yl O-alpha-L-rhamnopyranosyl-(1->2)-alpha-L-arabinopyranoside

C45H72O18 (900.4718412)


   
   

Spirostane -2H, + 2O, O-Hex-dHex-dHex

Spirostane -2H, + 2O, O-Hex-dHex-dHex

C45H72O18 (900.4718412)


Annotation level-3

   

26-Desglucoavenacoside A

2-{[4-hydroxy-6-(hydroxymethyl)-2-[5-(hydroxymethyl)-5,7,9,13-tetramethyl-5-oxaspiro[oxolane-2,6-pentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icosan]-18-eneoxy]-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C45H72O18 (900.4718412)


A steroid saponin that is avenacoside A lacking the 26-O-glucosyl residue.

   

Fistuloside B

2-{[5-hydroxy-6-(hydroxymethyl)-2-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icosan]-18-en-15-oloxy}-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O18 (900.4718412)


   

Parisvanioside E

26-O-beta-d-glucopyranosyl-(25R)-3beta,22alpha,26-trihydroxyfurost-5,7-dien- 3-O-alpha-l-rhamnopyranosyl-(1-2)-beta-d-glucopyranoside

C45H72O18 (900.4718412)


   

Spirostane + 2O,-2H, O-Hex-dHex-dHex

Spirostane + 2O,-2H, O-Hex-dHex-dHex

C45H72O18 (900.4718412)


   

Furostane base-1H2O-2H + 1O, O-Hex, O-Hex-dHex

Furostane base-1H2O-2H + 1O, O-Hex, O-Hex-dHex

C45H72O18 (900.4718412)


   
   
   
   
   
   
   
   
   
   
   
   

PGP(16:1(9Z)/PGF1alpha)

PGP(16:1(9Z)/PGF1alpha)

C42H78O16P2 (900.4764848)


   

PGP(PGF1alpha/16:1(9Z))

PGP(PGF1alpha/16:1(9Z))

C42H78O16P2 (900.4764848)


   
   
   

PGP(i-18:0/5-iso PGF2VI)

PGP(i-18:0/5-iso PGF2VI)

C42H78O16P2 (900.4764848)


   

PGP(5-iso PGF2VI/i-18:0)

PGP(5-iso PGF2VI/i-18:0)

C42H78O16P2 (900.4764848)


   

Archazolid E

Archazolid E

C48H72N2O12S (900.4805712000001)


A natural product found in Cystobacter violaceus.

   

(3beta,22S,25S)-26-hydroxy-22,25-epoxyfurost-5-en-3-yl 6-deoxy-alpha-L-mannopyranosyl-(1->2)-[beta-D-glucopyranosyl-(1->4)]-beta-D-glucopyranoside

(3beta,22S,25S)-26-hydroxy-22,25-epoxyfurost-5-en-3-yl 6-deoxy-alpha-L-mannopyranosyl-(1->2)-[beta-D-glucopyranosyl-(1->4)]-beta-D-glucopyranoside

C45H72O18 (900.4718412)


   

3beta-[(beta-D-glucopyranosyl)oxy]-17alpha-hydroxy-16beta-[(O-beta-D-xylopyranosyl)-(1->3)-2-O-acetyl-alpha-L-arabinopyranosyloxy]cholest-5-en-22-one

3beta-[(beta-D-glucopyranosyl)oxy]-17alpha-hydroxy-16beta-[(O-beta-D-xylopyranosyl)-(1->3)-2-O-acetyl-alpha-L-arabinopyranosyloxy]cholest-5-en-22-one

C45H72O18 (900.4718412)


A steroid saponin that is 3,16,17-trihydroxycholest-5-en-22-one attached to a beta-D-glucopyranosyl residue at position 3 and a 2-O-acetyl-3-O-(beta-D-xylopyranosyl)-alpha-L-arabinopyranosyl residue at position 16 via a glycosidic linkage. Isolated from Ornithogalum thyrsoides and Galtonia candicans, it exhibits cytotoxic activity.

   

(2S,3R,4R,5R,6S)-2-[(2R,3S,4S,5R,6R)-4-hydroxy-2-(hydroxymethyl)-6-[(1S,4S,5S,6S,7S,8R,9S,13R,16S)-5-(hydroxymethyl)-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-ene-6,2-oxolane]-16-yl]oxy-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-3-yl]oxy-6-methyloxane-3,4,5-triol

(2S,3R,4R,5R,6S)-2-[(2R,3S,4S,5R,6R)-4-hydroxy-2-(hydroxymethyl)-6-[(1S,4S,5S,6S,7S,8R,9S,13R,16S)-5-(hydroxymethyl)-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-ene-6,2-oxolane]-16-yl]oxy-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-3-yl]oxy-6-methyloxane-3,4,5-triol

C45H72O18 (900.4718412)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C49H73O13P (900.4788537999999)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoate

C49H72O15 (900.4870962)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoate

C49H73O13P (900.4788537999999)