Exact Mass: 898.5429

Exact Mass Matches: 898.5429

Found 22 metabolites which its exact mass value is equals to given mass value 898.5429, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

Spiramycin III

[(4R,5S,6S,7R,9R,10R,11E,13E,16R)-6-[(2S,3R,4R,5S,6R)-5-[(2S,4R,5S,6S)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy-10-[(2R,5S,6R)-5-(dimethylamino)-6-methyloxan-2-yl]oxy-5-methoxy-9,16-dimethyl-2-oxo-7-(2-oxoethyl)-1-oxacyclohexadeca-11,13-dien-4-yl] propanoate

C46H78N2O15 (898.5402)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007933 - Leucomycins

   

PGP(i-20:0/18:1(12Z)-O(9S,10R))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(18-methylnonadecanoyl)oxy]-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H84O14P2 (898.5336)


PGP(i-20:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-20:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(12Z)-O(9S,10R)/i-20:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(18-methylnonadecanoyl)oxy]-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H84O14P2 (898.5336)


PGP(18:1(12Z)-O(9S,10R)/i-20:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(12Z)-O(9S,10R)/i-20:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-20:0/18:1(9Z)-O(12,13))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(18-methylnonadecanoyl)oxy]-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H84O14P2 (898.5336)


PGP(i-20:0/18:1(9Z)-O(12,13)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-20:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(9Z)-O(12,13)/i-20:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(18-methylnonadecanoyl)oxy]-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H84O14P2 (898.5336)


PGP(18:1(9Z)-O(12,13)/i-20:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(9Z)-O(12,13)/i-20:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

Cangorosin B

Isoxuxuarine F alpha

C58H74O8 (898.5383)


   

xuxuarine Galpha

xuxuarine Galpha

C58H74O8 (898.5383)


   

xuxuarine Falpha|Xuxuarine F??

xuxuarine Falpha|Xuxuarine F??

C58H74O8 (898.5383)


   

isoxuxuarine Gbeta|Isoxuxuarine G??

isoxuxuarine Gbeta|Isoxuxuarine G??

C58H74O8 (898.5383)


   

PGP(i-20:0/18:1(12Z)-O(9S,10R))

PGP(i-20:0/18:1(12Z)-O(9S,10R))

C44H84O14P2 (898.5336)


   

PGP(18:1(12Z)-O(9S,10R)/i-20:0)

PGP(18:1(12Z)-O(9S,10R)/i-20:0)

C44H84O14P2 (898.5336)


   

PGP(i-20:0/18:1(9Z)-O(12,13))

PGP(i-20:0/18:1(9Z)-O(12,13))

C44H84O14P2 (898.5336)


   

PGP(18:1(9Z)-O(12,13)/i-20:0)

PGP(18:1(9Z)-O(12,13)/i-20:0)

C44H84O14P2 (898.5336)


   
   
   

Cardiotoxin Analog (CTX) IV (6-12)

Cardiotoxin Analog (CTX) IV (6-12)

C48H70N10O7 (898.5429)


Cardiotoxin Analog (CTX) IV (6-12) is a part peptide of Cardiotoxin Analog (CTX) IV. Cardiotoxin analogues IV isolated from the venom of Taiwan Cobra. CTX IV is an unique snake venom cardiotoxin[1].

   

methyl (3s,8s,11s,14r,16r,17s,20r,24s,32s,35s,38r,40r,41s,44r)-24-hydroxy-3,8,11,14,17,20,27,32,35,38,41,44-dodecamethyl-13,23,29-trioxo-2,25-dioxaundecacyclo[24.20.0.0³,²⁴.0⁴,²¹.0⁷,²⁰.0⁸,¹⁷.0¹¹,¹⁶.0²⁸,⁴⁵.0³¹,⁴⁴.0³²,⁴¹.0³⁵,⁴⁰]hexatetraconta-1(46),4,6,21,26,28(45),30-heptaene-38-carboxylate

methyl (3s,8s,11s,14r,16r,17s,20r,24s,32s,35s,38r,40r,41s,44r)-24-hydroxy-3,8,11,14,17,20,27,32,35,38,41,44-dodecamethyl-13,23,29-trioxo-2,25-dioxaundecacyclo[24.20.0.0³,²⁴.0⁴,²¹.0⁷,²⁰.0⁸,¹⁷.0¹¹,¹⁶.0²⁸,⁴⁵.0³¹,⁴⁴.0³²,⁴¹.0³⁵,⁴⁰]hexatetraconta-1(46),4,6,21,26,28(45),30-heptaene-38-carboxylate

C58H74O8 (898.5383)


   

(2r,5s,5's,6's,8'r,9'r,10's,11's,14's,17'r,18's,20'r,26's,27's,30'r,31'r,33's,35's,37's,38'r,41's)-5,8',10',18',37'-pentahydroxy-5,5',5'',5'',9',11',26',30'-octamethyldispiro[oxane-2,12'-[13,34]dioxa-[2,23]diazundecacyclo[22.18.0.0³,²².0⁵,²⁰.0⁶,¹⁷.0⁹,¹⁶.0¹⁰,¹⁴.0²⁶,⁴¹.0²⁷,³⁸.0³⁰,³⁷.0³¹,³⁵]dotetracontane-33',2''-oxolane]-1'(24'),2',15',22'-tetraen-29'-one

(2r,5s,5's,6's,8'r,9'r,10's,11's,14's,17'r,18's,20'r,26's,27's,30'r,31'r,33's,35's,37's,38'r,41's)-5,8',10',18',37'-pentahydroxy-5,5',5'',5'',9',11',26',30'-octamethyldispiro[oxane-2,12'-[13,34]dioxa-[2,23]diazundecacyclo[22.18.0.0³,²².0⁵,²⁰.0⁶,¹⁷.0⁹,¹⁶.0¹⁰,¹⁴.0²⁶,⁴¹.0²⁷,³⁸.0³⁰,³⁷.0³¹,³⁵]dotetracontane-33',2''-oxolane]-1'(24'),2',15',22'-tetraen-29'-one

C53H74N2O10 (898.5343)


   

methyl 24-hydroxy-3,8,11,14,17,20,27,32,35,38,41,44-dodecamethyl-13,23,29-trioxo-2,25-dioxaundecacyclo[24.20.0.0³,²⁴.0⁴,²¹.0⁷,²⁰.0⁸,¹⁷.0¹¹,¹⁶.0²⁸,⁴⁵.0³¹,⁴⁴.0³²,⁴¹.0³⁵,⁴⁰]hexatetraconta-1(46),4,6,21,26,28(45),30-heptaene-38-carboxylate

methyl 24-hydroxy-3,8,11,14,17,20,27,32,35,38,41,44-dodecamethyl-13,23,29-trioxo-2,25-dioxaundecacyclo[24.20.0.0³,²⁴.0⁴,²¹.0⁷,²⁰.0⁸,¹⁷.0¹¹,¹⁶.0²⁸,⁴⁵.0³¹,⁴⁴.0³²,⁴¹.0³⁵,⁴⁰]hexatetraconta-1(46),4,6,21,26,28(45),30-heptaene-38-carboxylate

C58H74O8 (898.5383)


   

methyl 11-({1a,3b,5a,8,9b,11a-hexamethyl-7,13-dioxo-4h,5h,6h,8h,9h,9ah,10h,11h-piceno[3,4-b]oxiren-13a-yl}oxy)-10-hydroxy-2,4a,6a,9,12b,14a-hexamethyl-8-oxo-1,3,4,5,6,13,14,14b-octahydropicene-2-carboxylate

methyl 11-({1a,3b,5a,8,9b,11a-hexamethyl-7,13-dioxo-4h,5h,6h,8h,9h,9ah,10h,11h-piceno[3,4-b]oxiren-13a-yl}oxy)-10-hydroxy-2,4a,6a,9,12b,14a-hexamethyl-8-oxo-1,3,4,5,6,13,14,14b-octahydropicene-2-carboxylate

C58H74O8 (898.5383)


   

methyl (2r,4as,6as,12br,14as,14br)-11-{[(1as,3bs,5as,8r,9as,9bs,11ar,13ar)-1a,3b,5a,8,9b,11a-hexamethyl-7,13-dioxo-4h,5h,6h,8h,9h,9ah,10h,11h-piceno[3,4-b]oxiren-13a-yl]oxy}-10-hydroxy-2,4a,6a,9,12b,14a-hexamethyl-8-oxo-1,3,4,5,6,13,14,14b-octahydropicene-2-carboxylate

methyl (2r,4as,6as,12br,14as,14br)-11-{[(1as,3bs,5as,8r,9as,9bs,11ar,13ar)-1a,3b,5a,8,9b,11a-hexamethyl-7,13-dioxo-4h,5h,6h,8h,9h,9ah,10h,11h-piceno[3,4-b]oxiren-13a-yl]oxy}-10-hydroxy-2,4a,6a,9,12b,14a-hexamethyl-8-oxo-1,3,4,5,6,13,14,14b-octahydropicene-2-carboxylate

C58H74O8 (898.5383)


   

methyl (8s,11s,14r,16r,17s,24s,32s,35s,38r,40r,41s,44r)-24-hydroxy-3,8,11,14,17,20,27,32,35,38,41,44-dodecamethyl-13,23,29-trioxo-2,25-dioxaundecacyclo[24.20.0.0³,²⁴.0⁴,²¹.0⁷,²⁰.0⁸,¹⁷.0¹¹,¹⁶.0²⁸,⁴⁵.0³¹,⁴⁴.0³²,⁴¹.0³⁵,⁴⁰]hexatetraconta-1(46),4,6,21,26,28(45),30-heptaene-38-carboxylate

methyl (8s,11s,14r,16r,17s,24s,32s,35s,38r,40r,41s,44r)-24-hydroxy-3,8,11,14,17,20,27,32,35,38,41,44-dodecamethyl-13,23,29-trioxo-2,25-dioxaundecacyclo[24.20.0.0³,²⁴.0⁴,²¹.0⁷,²⁰.0⁸,¹⁷.0¹¹,¹⁶.0²⁸,⁴⁵.0³¹,⁴⁴.0³²,⁴¹.0³⁵,⁴⁰]hexatetraconta-1(46),4,6,21,26,28(45),30-heptaene-38-carboxylate

C58H74O8 (898.5383)