Exact Mass: 887.4948373999999

Exact Mass Matches: 887.4948373999999

Found 82 metabolites which its exact mass value is equals to given mass value 887.4948373999999, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Demethylmacrocin

2-O-Demethyllactenocin

C44H73NO17 (887.4878248)


A macrolide antibiotic that is tylonolide having mono- and diglycosyl moieties attached to two of its hydroxy groups..

   

N-Acetyl-gastrin releasing peptide (20-26) ethyl ester

N-[2-[[2-[[2-[2-[[2-[[2-acetamido-3-(1H-imidazol-5-yl)propanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]propanoylamino]-3-methylbutanoyl]amino]acetyl]amino]-3-(1H-imidazol-5-yl)propanoyl]-2-(ethylamino)-4-methylpentanamide

C43H61N13O8 (887.4765826000001)


   

PA(20:0/LTE4)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-{[(2R)-1-(icosanoyloxy)-3-(phosphonooxy)propan-2-yl]oxy}-3-oxopropyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C46H82NO11PS (887.5345912)


PA(20:0/LTE4) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:0/LTE4), in particular, consists of one chain of one eicosanoyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(LTE4/20:0)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-[(2R)-2-(icosanoyloxy)-3-(phosphonooxy)propoxy]-3-oxopropyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C46H82NO11PS (887.5345912)


PA(LTE4/20:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(LTE4/20:0), in particular, consists of one chain of one Leukotriene E4 at the C-1 position and one chain of eicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-20:0/LTE4)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-{[(2R)-1-[(18-methylnonadecanoyl)oxy]-3-(phosphonooxy)propan-2-yl]oxy}-3-oxopropyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C46H82NO11PS (887.5345912)


PA(i-20:0/LTE4) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-20:0/LTE4), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(LTE4/i-20:0)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-[(2R)-2-[(18-methylnonadecanoyl)oxy]-3-(phosphonooxy)propoxy]-3-oxopropyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C46H82NO11PS (887.5345912)


PA(LTE4/i-20:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(LTE4/i-20:0), in particular, consists of one chain of one Leukotriene E4 at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:4(5Z,8Z,11Z,14Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

(2S)-2-amino-3-({[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H74NO12P (887.4948373999999)


PS(20:4(5Z,8Z,11Z,14Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:4(5Z,8Z,11Z,14Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/20:4(5Z,8Z,11Z,14Z))

(2S)-2-amino-3-({[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H74NO12P (887.4948373999999)


PS(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/20:4(5Z,8Z,11Z,14Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

(2S)-2-amino-3-({[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H74NO12P (887.4948373999999)


PS(20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/20:4(5Z,8Z,11Z,14Z))

(2S)-2-amino-3-({[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H74NO12P (887.4948373999999)


PS(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/20:4(5Z,8Z,11Z,14Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:4(8Z,11Z,14Z,17Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

(2S)-2-amino-3-({[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H74NO12P (887.4948373999999)


PS(20:4(8Z,11Z,14Z,17Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:4(8Z,11Z,14Z,17Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/20:4(8Z,11Z,14Z,17Z))

(2S)-2-amino-3-({[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H74NO12P (887.4948373999999)


PS(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/20:4(8Z,11Z,14Z,17Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:4(8Z,11Z,14Z,17Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

(2S)-2-amino-3-({[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H74NO12P (887.4948373999999)


PS(20:4(8Z,11Z,14Z,17Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:4(8Z,11Z,14Z,17Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/20:4(8Z,11Z,14Z,17Z))

(2S)-2-amino-3-({[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H74NO12P (887.4948373999999)


PS(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/20:4(8Z,11Z,14Z,17Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(22:5(4Z,7Z,10Z,13Z,16Z)/PGJ2)

(2S)-2-amino-3-({[(2R)-3-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-2-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H74NO12P (887.4948373999999)


PS(22:5(4Z,7Z,10Z,13Z,16Z)/PGJ2) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:5(4Z,7Z,10Z,13Z,16Z)/PGJ2), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(PGJ2/22:5(4Z,7Z,10Z,13Z,16Z))

(2S)-2-amino-3-({[(2R)-2-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-3-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H74NO12P (887.4948373999999)


PS(PGJ2/22:5(4Z,7Z,10Z,13Z,16Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(PGJ2/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(22:5(7Z,10Z,13Z,16Z,19Z)/PGJ2)

(2S)-2-amino-3-({[(2R)-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]-2-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H74NO12P (887.4948373999999)


PS(22:5(7Z,10Z,13Z,16Z,19Z)/PGJ2) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:5(7Z,10Z,13Z,16Z,19Z)/PGJ2), in particular, consists of one chain of one 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(PGJ2/22:5(7Z,10Z,13Z,16Z,19Z))

(2S)-2-amino-3-({[(2R)-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]-3-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H74NO12P (887.4948373999999)


PS(PGJ2/22:5(7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(PGJ2/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

(2S)-2-amino-3-({[(2R)-2-{[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H74NO12P (887.4948373999999)


PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

(2S)-2-amino-3-({[(2R)-3-{[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H74NO12P (887.4948373999999)


PS(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one Leukotriene B4 at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

(2S)-2-amino-3-({[(2R)-2-{[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H74NO12P (887.4948373999999)


PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

(2S)-2-amino-3-({[(2R)-3-{[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H74NO12P (887.4948373999999)


PS(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

(2S)-2-amino-3-({[(2R)-2-{[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H74NO12P (887.4948373999999)


PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

(2S)-2-amino-3-({[(2R)-3-{[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H74NO12P (887.4948373999999)


PS(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

Calcium phytate

Hexacalcium (1S,2R,3R,4S,5R,6S)-2,3,4,5,6-pentakis(phosphonatooxy)cyclohexyl phosphoric acid

C6H6Ca6O24P6 (887.5430316000001)


It is used as a food additive .

   

dihydrogeranylgeranyl-chlorophyll a

17-ethenyl-12-ethyl-5-(methoxycarbonyl)-8,13,18,22-tetramethyl-6-oxo-23-{3-oxo-3-[(3,7,11,15-tetramethylhexadeca-2,10,14-trien-1-yl)oxy]propyl}-2,25λ⁵,26λ⁵,27-tetraaza-1-magnesanonacyclo[12.11.1.1¹,¹⁶.0²,⁹.0³,⁷.0⁴,²⁴.0¹¹,²⁶.0²¹,²⁵.0¹⁹,²⁷]heptacosa-3,7,9,11(26),12,14,16,18,20,24-decaene-25,26-bis(ylium)-5-ide-1,1-diuide

C55H67MgN4O5 (887.4961691999999)


Dihydrogeranylgeranyl-chlorophyll a is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Dihydrogeranylgeranyl-chlorophyll a can be found in a number of food items such as hard wheat, common mushroom, common sage, and canada blueberry, which makes dihydrogeranylgeranyl-chlorophyll a a potential biomarker for the consumption of these food products.

   

18-Dihydro-9-propionylmaridomycin III

18-Dihydro-9-propionylmaridomycin III

C44H73NO17 (887.4878248)


   
   

(7E,11E)-17-{[3,4-dihydroxy-5-(2-hydroxy-4-methoxy-6-methylbenzamido)-4,6-dimethyloxan-2-yl]oxy}-27-hydroxy-3,6,8,12,14,20,22-heptamethyl-23,25-dioxo-26-oxapentacyclo[22.2.1.0¹,⁶.0¹³,²².0¹⁶,²¹]heptacosa-4,7,11,14,24(27)-pentaene-4-carboxylic acid

(7E,11E)-17-{[3,4-dihydroxy-5-(2-hydroxy-4-methoxy-6-methylbenzamido)-4,6-dimethyloxan-2-yl]oxy}-27-hydroxy-3,6,8,12,14,20,22-heptamethyl-23,25-dioxo-26-oxapentacyclo[22.2.1.0¹,⁶.0¹³,²².0¹⁶,²¹]heptacosa-4,7,11,14,24(27)-pentaene-4-carboxylic acid

C50H65NO13 (887.445568)


   
   
   
   
   
   

C50H65NO13_(7E,11E)-17-({4,6-Dideoxy-4-[(2-hydroxy-4-methoxy-6-methylbenzoyl)amino]-3-C-methylhexopyranosyl}oxy)-27-hydroxy-3,6,8,12,14,20,22-heptamethyl-23,25-dioxo-26-oxapentacyclo[22.2.1.0~1,6~.0~13,22~.0~16,21~]heptacosa-4,7,11,14,24(27)-pentaene-4-carboxylic acid

NCGC00347499-02_C50H65NO13_(7E,11E)-17-({4,6-Dideoxy-4-[(2-hydroxy-4-methoxy-6-methylbenzoyl)amino]-3-C-methylhexopyranosyl}oxy)-27-hydroxy-3,6,8,12,14,20,22-heptamethyl-23,25-dioxo-26-oxapentacyclo[22.2.1.0~1,6~.0~13,22~.0~16,21~]heptacosa-4,7,11,14,24(27)-pentaene-4-carboxylic acid

C50H65NO13 (887.445568)


   
   

3-[3-Butan-2-yl-22-dodecan-2-yl-18-(1-hydroxyethyl)-6-[(4-hydroxyphenyl)methyl]-12,15-dimethyl-2,5,8,11,14,17,20-heptaoxo-1-oxa-4,7,10,13,16,19-hexazacyclodocos-9-yl]propanamide

3-[3-Butan-2-yl-22-dodecan-2-yl-18-(1-hydroxyethyl)-6-[(4-hydroxyphenyl)methyl]-12,15-dimethyl-2,5,8,11,14,17,20-heptaoxo-1-oxa-4,7,10,13,16,19-hexazacyclodocos-9-yl]propanamide

C45H73N7O11 (887.5367788)


   

1-phosphatidyl-1D-myo-inositol 4-phosphate

1-phosphatidyl-1D-myo-inositol 4-phosphate

C41H77O16P2-3 (887.4686602)


   
   
   
   
   
   
   
   
   
   

PS(20:4(5Z,8Z,11Z,14Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PS(20:4(5Z,8Z,11Z,14Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C48H74NO12P (887.4948373999999)


   

PS(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/20:4(5Z,8Z,11Z,14Z))

PS(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/20:4(5Z,8Z,11Z,14Z))

C48H74NO12P (887.4948373999999)


   

PS(20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PS(20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C48H74NO12P (887.4948373999999)


   

PS(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/20:4(5Z,8Z,11Z,14Z))

PS(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/20:4(5Z,8Z,11Z,14Z))

C48H74NO12P (887.4948373999999)


   

PS(20:4(8Z,11Z,14Z,17Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PS(20:4(8Z,11Z,14Z,17Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C48H74NO12P (887.4948373999999)


   

PS(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/20:4(8Z,11Z,14Z,17Z))

PS(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/20:4(8Z,11Z,14Z,17Z))

C48H74NO12P (887.4948373999999)


   

PS(20:4(8Z,11Z,14Z,17Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PS(20:4(8Z,11Z,14Z,17Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C48H74NO12P (887.4948373999999)


   

PS(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/20:4(8Z,11Z,14Z,17Z))

PS(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/20:4(8Z,11Z,14Z,17Z))

C48H74NO12P (887.4948373999999)


   

PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

C48H74NO12P (887.4948373999999)


   

PS(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

PS(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

C48H74NO12P (887.4948373999999)


   

PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

C48H74NO12P (887.4948373999999)


   

PS(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

PS(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

C48H74NO12P (887.4948373999999)


   

PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

C48H74NO12P (887.4948373999999)


   

PS(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

PS(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

C48H74NO12P (887.4948373999999)


   

2-[[(2R)-2-[(2R)-2-amino-3-[(4S,5R,6E,8E,10Z,13Z)-1-carboxy-4-hydroxynonadeca-6,8,10,13-tetraen-5-yl]sulfanylpropanoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(2R)-2-amino-3-[(4S,5R,6E,8E,10Z,13Z)-1-carboxy-4-hydroxynonadeca-6,8,10,13-tetraen-5-yl]sulfanylpropanoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C45H80N2O11PS+ (887.5220160000001)


   

2-[[(2R)-3-[(2R)-2-amino-3-[(4S,5R,6E,8E,10Z,13Z)-1-carboxy-4-hydroxynonadeca-6,8,10,13-tetraen-5-yl]sulfanylpropanoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(2R)-2-amino-3-[(4S,5R,6E,8E,10Z,13Z)-1-carboxy-4-hydroxynonadeca-6,8,10,13-tetraen-5-yl]sulfanylpropanoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C45H80N2O11PS+ (887.5220160000001)


   

1,2-dihexadecanoyl-sn-glycero-3-phospho-(1D-myo-inositol-4-phosphate)(3-)

1,2-dihexadecanoyl-sn-glycero-3-phospho-(1D-myo-inositol-4-phosphate)(3-)

C41H77O16P2-3 (887.4686602)


   

1,2-dipalmitoyl-sn-glycero-3-phospho-(1D-myo-inositol-3-phosphate)(3-)

1,2-dipalmitoyl-sn-glycero-3-phospho-(1D-myo-inositol-3-phosphate)(3-)

C41H77O16P2-3 (887.4686602)


   

1,2-dipalmitoyl-sn-glycero-3-phospho-(1D-myo-inositol-5-phosphate)(3-)

1,2-dipalmitoyl-sn-glycero-3-phospho-(1D-myo-inositol-5-phosphate)(3-)

C41H77O16P2-3 (887.4686602)


   

3-{(3S,6R,9S,12R,15S,18R)-22-(2-Dodecanyl)-6-(4-hydroxybenzyl)-18-[(1R)-1-hydroxyethyl]-3-isobutyl-1

3-{(3S,6R,9S,12R,15S,18R)-22-(2-Dodecanyl)-6-(4-hydroxybenzyl)-18-[(1R)-1-hydroxyethyl]-3-isobutyl-1

C45H73N7O11 (887.5367788)


   

1,2-dipalmitoylglycero-3-phospho-(1-D-myo-inositol-3-phosphate)(3-)

1,2-dipalmitoylglycero-3-phospho-(1-D-myo-inositol-3-phosphate)(3-)

C41H77O16P2-3 (887.4686602)


   
   

1,2-dihexadecanoyl-sn-glycero-3-phospho-(1D-myo-inositol-4-phosphate)(3-)

1,2-dihexadecanoyl-sn-glycero-3-phospho-(1D-myo-inositol-4-phosphate)(3-)

C41H77O16P2 (887.4686602)


A 1-phosphatidyl-1D-myo-inositol 4-phosphate(3-) in which the phosphatidyl acyl groups at positions 1 and 2 are both specified as hexadecanoyl (palmitoyl).

   

1,2-dipalmitoyl-sn-glycero-3-phospho-(1D-myo-inositol-5-phosphate)(3-)

1,2-dipalmitoyl-sn-glycero-3-phospho-(1D-myo-inositol-5-phosphate)(3-)

C41H77O16P2 (887.4686602)


A 1-phosphatidyl-1D-myo-inositol 5-phosphate(3-) obtained by deprotonation of the phosphate OH groups of 1,2-dipalmitoyl-sn-glycero-3-phospho-(1D-myo-inositol-5-phosphate); major species at pH 7.3.

   

1,2-dipalmitoyl-sn-glycero-3-phospho-(1D-myo-inositol-3-phosphate)(3-)

1,2-dipalmitoyl-sn-glycero-3-phospho-(1D-myo-inositol-3-phosphate)(3-)

C41H77O16P2 (887.4686602)


A 1-phosphatidyl-1D-myo-inositol 5-phosphate(3-) arising from deprotonation of the phosphate OH groups of 1,2-dipalmitoyl-sn-glycero-3-phospho-(1-myo-inositol-5-phosphate); major species at pH 7.3.

   
   
   
   
   
   
   

2-[(4r,5r,6s,7r,9s,11z,13e,15r,16r)-6-{[(2s,3s,4r,5s,6r)-5-{[(2r,4s,5s,6r)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy}-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-16-ethyl-4-hydroxy-5,9,13-trimethyl-2,10-dioxo-15-({[(2s,3s,4r,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)-1-oxacyclohexadeca-11,13-dien-7-yl]acetaldehyde

2-[(4r,5r,6s,7r,9s,11z,13e,15r,16r)-6-{[(2s,3s,4r,5s,6r)-5-{[(2r,4s,5s,6r)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy}-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-16-ethyl-4-hydroxy-5,9,13-trimethyl-2,10-dioxo-15-({[(2s,3s,4r,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)-1-oxacyclohexadeca-11,13-dien-7-yl]acetaldehyde

C44H73NO17 (887.4878248)