Exact Mass: 884.4816
Exact Mass Matches: 884.4816
Found 151 metabolites which its exact mass value is equals to given mass value 884.4816
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Gracillin
Gracillin is a triterpenoid. Gracillin is a natural product found in Dracaena draco, Clintonia udensis, and other organisms with data available. Gracillin is a steroidal saponin extracted from the roots of the plant and has anti-tumor properties. Gracillin is a steroidal saponin extracted from the roots of the plant and has anti-tumor properties.
Deltonin
Deltonin is a triterpenoid. Deltonin is a natural product found in Ophiopogon planiscapus, Allium vineale, and other organisms with data available. Deltonin is found in onion-family vegetables. Deltonin is a constituent of Allium vineale (wild garlic) Deltonin, a steroidal saponin, isolated from Dioscorea zingiberensis, has antitumor activity; Deltonin inhibits ERK1/2 and AKT activation. Deltonin, a steroidal saponin, isolated from Dioscorea zingiberensis, has antitumor activity; Deltonin inhibits ERK1/2 and AKT activation. Deltonin, a steroidal saponin, isolated from Dioscorea zingiberensis, has antitumor activity; Deltonin inhibits ERK1/2 and AKT activation.
Polypodoside A
Polypodoside A is a constituent of rhizomes of the licorice fern (Polypodium glycyrrhiza). Intensely sweet substance. Constituent of rhizomes of the licorice fern (Polypodium glycyrrhiza). Intensely sweet substance.
Diosgenin 3-[glucosyl-(1->4)-rhamnosyl-(1->4)-glucoside]
Diosgenin 3-[glucosyl-(1->4)-rhamnosyl-(1->4)-glucoside] is found in onion-family vegetables. Diosgenin 3-[glucosyl-(1->4)-rhamnosyl-(1->4)-glucoside] is a constituent of Allium vineale (wild garlic).
Melongoside H
Melongoside H is found in fruits. Melongoside H is a constituent of Solanum melongena (aubergine). Constituent of Solanum melongena (aubergine). Melongoside H is found in fruits and eggplant.
Graecunin G
Isolated from the leaves of Trigonella foenum-graecum (fenugreek). Graecunin G is found in herbs and spices and fenugreek. Graecunin G is found in fenugreek. Graecunin G is isolated from the leaves of Trigonella foenum-graecum (fenugreek).
beta-Chacotriosyllilagen
beta-Chacotriosyllilagen is found in onion-family vegetables. beta-Chacotriosyllilagen is a constituent of Allium tuberosum (Chinese chives)
PGP(16:0/20:3(8Z,11Z,14Z)-2OH(5,6))
PGP(16:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/16:0)
PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/16:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(18:2(9Z,11Z)/18:1(12Z)-2OH(9,10))
PGP(18:2(9Z,11Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,11Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(18:1(12Z)-2OH(9,10)/18:2(9Z,11Z))
PGP(18:1(12Z)-2OH(9,10)/18:2(9Z,11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(12Z)-2OH(9,10)/18:2(9Z,11Z)), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(18:2(9Z,12Z)/18:1(12Z)-2OH(9,10))
PGP(18:2(9Z,12Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,12Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(18:1(12Z)-2OH(9,10)/18:2(9Z,12Z))
PGP(18:1(12Z)-2OH(9,10)/18:2(9Z,12Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(12Z)-2OH(9,10)/18:2(9Z,12Z)), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(i-16:0/20:3(8Z,11Z,14Z)-2OH(5,6))
PGP(i-16:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-16:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/i-16:0)
PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/i-16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/i-16:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
Pennogenin triglycoside
Pennogenin 3-O-beta-chacotrioside is a natural product found in Ypsilandra thibetica, Triteleia hyacinthina, and other organisms with data available. Pennogenin 3-O-beta-chacotrioside is an active component isolated from Paris polyphylla, modulates autophagy via increasing the expressions of autophagy-related proteins LC3 and Beclin-1. Anti-colorectal cancer activity[1]. Pennogenin 3-O-beta-chacotrioside is an active component isolated from Paris polyphylla, modulates autophagy via increasing the expressions of autophagy-related proteins LC3 and Beclin-1. Anti-colorectal cancer activity[1].
Pennogenin
Pennogenin 3-O-beta-chacotrioside is a natural product found in Ypsilandra thibetica, Triteleia hyacinthina, and other organisms with data available. Pennogenin 3-O-beta-chacotrioside is an active component isolated from Paris polyphylla, modulates autophagy via increasing the expressions of autophagy-related proteins LC3 and Beclin-1. Anti-colorectal cancer activity[1]. Pennogenin 3-O-beta-chacotrioside is an active component isolated from Paris polyphylla, modulates autophagy via increasing the expressions of autophagy-related proteins LC3 and Beclin-1. Anti-colorectal cancer activity[1].
(25S)-spirostan-5-ene-3beta,21-diol-3-O-alpha-L-rhamnopyranosyl-(1,2)-[alpha-L-rhamnopyranosyl-(1,4)]-beta-D-glucopyranoside|yamogenin II
(25R)-Spirost-5-en-3beta,14alpha-diol-3-O-(2-O-alpha-L-rhamnopyranosyl)(4-O-alpha-L-rhamnopyranosyl)-beta-D-glucopyranosid|25(R)-dracaenoside G
(25R,26R)-26-Methoxyspirost-5-en-3beta-ol 3-O-alpha-L-rhamnopyranosyl-(1->2)-O-3)>-beta-D-glucopyranoside|(25R,26R)-26-Methoxyspirost-5-en-3beta-ol 3-O-alpha-L-rhamnopyranosyl-(1->2)-O-[alpha-L-arabinopyranosyl-(1->3)]-beta-D-glucopyranoside
3-O-<(beta-D-glucopyranosyl(1->3))(alpha-L-rhamnopyranosyl(1->4))beta-D-glucopyranosyl>-(25S)-spirost-5-en-3beta-ol|3-O-{[beta-D-glucopyranosyl(1->3)][alpha-L-rhamnopyranosyl(1->4)]beta-D-glucopyranosyl}-(25S)-spirost-5-en-3beta-ol
26-O-beta-D-glucopyranose-3beta,26-diol-(25R)-Delta5,20(22)-3-O-{[alpha-L-(25R)-pyranorhamnose(1-4)]-beta-D-glucopyranoside}
(25R)-17alpha-hydroxyspirost-5-en-3beta-yl alpha-L-rhamnopyranosyl-(1->4)-alpha-L-rhamnopyranosyl-(1->4)-beta-D-glucopyranoside|(3beta,17alpha,25R)-spirost-5-ene-3,17-diol-3-O-alpha-L-rhamnopyranosyl-(1->4)-alpha-L-rhamnopyranosyl-(1->4)-beta-D-glucopyranoside|pennogenin 3-O-alpha-L-rhamnopyranosyl(1?4)-alpha-L-rhamnopyranosyl(1?4)-beta-D-glucopyranoside|pennogenin 3-O-alpha-L-rhamnopyranosyl-(1->4)-alpha-L-rhamnopyranosyl-(1->4)-beta-D-glucopyranoside
2beta,3beta,17,23-tetrahydroxy-28-norolean-12-en-16-one-3-O-alpha-L-arabinopyranosyl(1-2)-alpha-L-arabinopyranosyl(1-6)-beta-D-glucopyranoside
nuatigenin 3-O-2)-O-4)>-beta-D-glucopyranoside>|nuatigenin 3-O-{O-alpha-L-rhamnopyranosyl-(1-->2)-O-[alpha-L-rhamnopyranosyl-(1-->4)]-beta-D-glucopyranoside}
3-O-{alpha-L-rhamnopyranoside(1?2)-O-[alpha-L-rhamnopyranoside(1?3)]-beta-D-glucopyranosyl}(1,3,22R,25S)-spirost-5-ene-1beta,3beta-diol|drangustoside A
ruscogenin-1-O-[beta-D-glucopyranosyl(1->2)]-[beta-D-xylopyranosyl(1->3)]-beta-D-fucopyranoside
(25R)-spirost-5-en-3beta-yl O-alpha-L-rhamnopyranosyl-(1->2)-O-6)>-beta-D-glucopyranoside|(25R)-spirost-5-en-3beta-yl O-beta-D-glucopyranosyl-(1->6)-[O-alpha-L-rhamnopyranosyl(1->2)]-beta-D-glucopyranoside|(3beta,25R)-spirost-5-en-3-ol 3-O-beta-D-glucopyranosyl-(1?6)-[alpha-L-rhamnopyranosyl-(1?2)]-beta-D-glucopyranoside
(25R)-1alpha-hydroxyspirost-5-en-3beta-yl O-alpha-L-rhamnopyranosyl-(1->2)-[O-alpha-L-rhamnopyranosyl(1->4)]-beta-D-glucopyranoside
(24S,25R)-24-Hydroxyspirost-5-en-3??-yl O-??-L-rhamnopyranosyl-(1鈥樏傗垎2)-O-[??-L-rhamnopyranosyl-(1鈥樏傗垎3)]-??-D-glucopyranoside
Furostan, β-D-glucopyranoside deriv
Furostan, |A-D-glucopyranoside deriv is a natural product found in Dioscorea panthaica with data available.
Polypodoside A
b-Chacotriosyllilagen
GRAECUNIN G
Melongoside H
Diosgenin 3-[glucosyl-(1->4)-rhamnosyl-(1->4)-glucoside]
3-O-(Rhaa1-2Glcb)-26-O-(Glcb)-(25R)-furosta-5,20(22)-dien-3beta,26-diol
TG 53:20;O3
3-O-(Rhaa1-2(Glcb1-4)Glcb)-(25R)-spirost-5en-3beta-ol
[6-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-6-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
Deltonin
Deltonin is a triterpenoid. Deltonin is a natural product found in Ophiopogon planiscapus, Allium vineale, and other organisms with data available. Deltonin, a steroidal saponin, isolated from Dioscorea zingiberensis, has antitumor activity; Deltonin inhibits ERK1/2 and AKT activation. Deltonin, a steroidal saponin, isolated from Dioscorea zingiberensis, has antitumor activity; Deltonin inhibits ERK1/2 and AKT activation. Deltonin, a steroidal saponin, isolated from Dioscorea zingiberensis, has antitumor activity; Deltonin inhibits ERK1/2 and AKT activation.
2-[(6-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}oxan-3-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-2-[(1's,2r,2'r,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
2-{[3-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-8'-oloxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol
2-{[5-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's,20'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-20'-oloxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
n-(4,10-dimethoxy-3,5,9-trimethyl-6-oxo-11-{12,16,22-trihydroxy-10-methoxy-11,14,21-trimethyl-18-oxo-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1²,⁵.1⁶,⁹]hentriaconta-1(28),2(31),4,6(30),8,24,26(29)-heptaen-20-yl}undec-1-en-1-yl)-n-methylformamide
2-hydroxy-10-{[(2r,3r,4s,5s,6r)-5-hydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-2,6a,6b,9,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
2-[(6-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-8'-oloxy}oxan-3-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl)oxy]-6-methyloxane-3,4,5-triol
(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s,6r)-4-hydroxy-6-(hydroxymethyl)-2-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
(2s,3r,4s,5s,6r)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5s,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
2-{[4-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(1r,3ar,5as,7s,9ar,9br,11ar)-7-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-1-[(1s)-1-[(2s,5r,6s)-5-methyl-6-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]ethyl]-1h,2h,3h,3ah,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one
(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's,20's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-20'-oloxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5r,6s)-6-{[(2r,3s,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]oxan-3-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
2-[(2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}oxan-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol
(24s,25r)-24-hydroxyspirost-5-en-3β-yl o-α-l-rhamnopyranosyl-(1→2)-o-[α-l-rhamnopyra-nosyl-(1→3)]-β-d-glucopyranoside
{"Ingredient_id": "HBIN004522","Ingredient_name": "(24s,25r)-24-hydroxyspirost-5-en-3\u03b2-yl o-\u03b1-l-rhamnopyranosyl-(1\u21922)-o-[\u03b1-l-rhamnopyra-nosyl-(1\u21923)]-\u03b2-d-glucopyranoside","Alias": "NA","Ingredient_formula": "C45H72O17","Ingredient_Smile": "CC1COC2(CC1O)C(C3C(O2)CC4C3(CCC5C4CC=C6C5(CCC(C6)OC7C(C(C(C(O7)CO)O)OC8C(C(C(C(O8)C)O)O)O)OC9C(C(C(C(O9)C)O)O)O)C)C)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "10725","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
(25r)-spirost-5-en-3β-yl-o-α-l-rhamnopyra-nosyl-(1→2)-o-[β-d-glucopyranosyl-(1→6)]-β-d-glucopyranoside
{"Ingredient_id": "HBIN004755","Ingredient_name": "(25r)-spirost-5-en-3\u03b2-yl-o-\u03b1-l-rhamnopyra-nosyl-(1\u21922)-o-[\u03b2-d-glucopyranosyl-(1\u21926)]-\u03b2-d-glucopyranoside","Alias": "NA","Ingredient_formula": "C45H72O17","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "20206","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
(25s)-spirost-5-en-3β-yl o-β-d-glucopyranosyl-(1→4)-o-α-l-rhamnopyranosyl-(1→3)-β-d-glucopyranoside
{"Ingredient_id": "HBIN004805","Ingredient_name": "(25s)-spirost-5-en-3\u03b2-yl o-\u03b2-d-glucopyranosyl-(1\u21924)-o-\u03b1-l-rhamnopyranosyl-(1\u21923)-\u03b2-d-glucopyranoside","Alias": "NA","Ingredient_formula": "C45H72O17","Ingredient_Smile": "CC1CCC2(C(C3C(O2)CC4C3(CCC5C4CC=C6C5(CCC(C6)OC7C(C(C(C(O7)CO)O)OC8C(C(C(C(O8)C)OC9C(C(C(C(O9)CO)O)O)O)O)O)O)C)C)C)OC1","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "20205","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
3,20-dihydroxy-30-nor-12-oleanen-28-oic acid; (3β,20α)-form,3-o-[beta-l-xylopyranosyl-(1→2)-[alpha-l-arabinopyranosyl-(1→3)]-beta-d-glucopyranoside]
{"Ingredient_id": "HBIN006990","Ingredient_name": "3,20-dihydroxy-30-nor-12-oleanen-28-oic acid; (3\u03b2,20\u03b1)-form,3-o-[beta-l-xylopyranosyl-(1\u21922)-[alpha-l-arabinopyranosyl-(1\u21923)]-beta-d-glucopyranoside]","Alias": "NA","Ingredient_formula": "C45H72O17","Ingredient_Smile": "NA","Ingredient_weight": "0","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "NA","TCMSP_id": "NA","TCM_ID_id": "8415","PubChem_id": "NA","DrugBank_id": "NA"}
3-o-[α-l-rhamnopyranosyl-(1→4)-β-d-glu-copyranosyl]-26-o-(β-d-glucopyranosyl)-(25r)-furosta-5,20-dien-3β, 26-diol
{"Ingredient_id": "HBIN009114","Ingredient_name": "3-o-[\u03b1-l-rhamnopyranosyl-(1\u21924)-\u03b2-d-glu-copyranosyl]-26-o-(\u03b2-d-glucopyranosyl)-(25r)-furosta-5,20-dien-3\u03b2, 26-diol","Alias": "NA","Ingredient_formula": "C45H72O17","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "18696","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
3-o-[bis-α-l-rhamnopyranosyl-(1→2and1→4)-β-d-glucopyranosyl]-22r,25r-spirost-5-ene-3β,20α-diol
{"Ingredient_id": "HBIN009276","Ingredient_name": "3-o-[bis-\u03b1-l-rhamnopyranosyl-(1\u21922and1\u21924)-\u03b2-d-glucopyranosyl]-22r,25r-spirost-5-ene-3\u03b2,20\u03b1-diol","Alias": "NA","Ingredient_formula": "C45H72O17","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "2493","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
asparanin b1
{"Ingredient_id": "HBIN017105","Ingredient_name": "asparanin b1","Alias": "NA","Ingredient_formula": "C45H72O17","Ingredient_Smile": "CC1CCC2(C(C3C(O2)CC4C3(CCC5C4CCC6C5(CCC(C6)OC7C(C(C(C(O7)CO)O)O)OC8C9C(C(C(O8)C)OC2C(C(C(C(O2)CO)O)O)O)OO9)C)C)C)OC1","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "1869","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}