Exact Mass: 881.5934234

Exact Mass Matches: 881.5934234

Found 85 metabolites which its exact mass value is equals to given mass value 881.5934234, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

PC(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

(2-{[(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C52H84NO8P (881.5934234)


PC(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The adrenic acid moiety is derived from animal fats, while the docosahexaenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(22:5(4Z,7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,16Z))

(2-{[(2R)-2,3-bis[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C52H84NO8P (881.5934234)


PC(22:5(4Z,7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,16Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:5(4Z,7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of two chains of docosapentaenoic acid at the C-1 and C-2 positions. The docosapentaenoic acid moieties are derived from animal fats and brain. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(22:5(4Z,7Z,10Z,13Z,16Z)/22:5(7Z,10Z,13Z,16Z,19Z))

(2-{[(2R)-3-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C52H84NO8P (881.5934234)


PC(22:5(4Z,7Z,10Z,13Z,16Z)/22:5(7Z,10Z,13Z,16Z,19Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:5(4Z,7Z,10Z,13Z,16Z)/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of two chains of docosapentaenoic acid at the C-1 and C-2 positions. The docosapentaenoic acid moieties are derived from animal fats and brain. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(22:5(4Z,7Z,10Z,13Z,16Z)/22:5(7Z,10Z,13Z,16Z,19Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:5(4Z,7Z,10Z,13Z,16Z)/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of two chains of docosapentaenoic acid at the C-1 and C-2 positions. The docosapentaenoic acid moieties are derived from animal fats and brain. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(22:5(7Z,10Z,13Z,16Z,19Z)/22:5(4Z,7Z,10Z,13Z,16Z))

(2-{[(2R)-2-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C52H84NO8P (881.5934234)


PC(22:5(7Z,10Z,13Z,16Z,19Z)/22:5(4Z,7Z,10Z,13Z,16Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:5(7Z,10Z,13Z,16Z,19Z)/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of two chains of docosapentaenoic acid at the C-1 and C-2 positions. The docosapentaenoic acid moieties are derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(22:5(7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z))

(2-{[(2R)-2,3-bis[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C52H84NO8P (881.5934234)


PC(22:5(7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:5(7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of two chains of docosapentaenoic acid at the C-1 and C-2 positions. The docosapentaenoic acid moieties are derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:4(7Z,10Z,13Z,16Z))

(2-{[(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C52H84NO8P (881.5934234)


PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:4(7Z,10Z,13Z,16Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of adrenic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the adrenic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:4(7Z,10Z,13Z,16Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of adrenic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the adrenic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   
   

Lecithin

1-Docosapentaenoyl-2-docosapentaenoyl-sn-glycero-3-phosphocholine

C52H84NO8P (881.5934234)


   

PC 44:10

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-glycero-3-phosphocholine

C52H84NO8P (881.5934234)


   

Am-Hex-PE 34:0

N-(1-deoxyfructosyl)-1-hexadecanoyl-2-octadecanoyl-sn-glycero-3-phosphoethanolamine

C45H88NO13P (881.5992967999999)


   

PC(22:5(7Z,10Z,13Z,16Z,19Z)/22:5(4Z,7Z,10Z,13Z,16Z))

PC(22:5(7Z,10Z,13Z,16Z,19Z)/22:5(4Z,7Z,10Z,13Z,16Z))

C52H84NO8P (881.5934234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoate

C52H84NO8P (881.5934234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-7,10,13,16,19,22,25,28,31-nonaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-7,10,13,16,19,22,25,28,31-nonaenoate

C52H84NO8P (881.5934234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoate

C52H84NO8P (881.5934234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-6,9,12,15,18,21,24,27,30,33-decaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-6,9,12,15,18,21,24,27,30,33-decaenoate

C52H84NO8P (881.5934234)


   
   
   
   
   
   
   
   
   
   
   
   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-8,11,14,17,20,23,26,29,32,35-decaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-8,11,14,17,20,23,26,29,32,35-decaenoate

C52H84NO8P (881.5934234)


   

[2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H84NO8P (881.5934234)


   

[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H84NO8P (881.5934234)


   

[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H84NO8P (881.5934234)


   

[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H84NO8P (881.5934234)


   

[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H84NO8P (881.5934234)


   

[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H84NO8P (881.5934234)


   

[2-[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-6,9,12,15,18,21,24,27,30,33-decaenoyl]oxy-3-octanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-6,9,12,15,18,21,24,27,30,33-decaenoyl]oxy-3-octanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H84NO8P (881.5934234)


   

[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H84NO8P (881.5934234)


   

[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H84NO8P (881.5934234)


   

2,3-bis[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy]propyl 2-(trimethylazaniumyl)ethyl phosphate

2,3-bis[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy]propyl 2-(trimethylazaniumyl)ethyl phosphate

C52H84NO8P (881.5934234)


   

(5Z,8Z,11Z,14Z,17Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhexadecan-2-yl]icosa-5,8,11,14,17-pentaenamide

(5Z,8Z,11Z,14Z,17Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhexadecan-2-yl]icosa-5,8,11,14,17-pentaenamide

C48H83NO13 (881.5864108)


   

(12Z,15Z,18Z,21Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodec-4-en-2-yl]tetracosa-12,15,18,21-tetraenamide

(12Z,15Z,18Z,21Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodec-4-en-2-yl]tetracosa-12,15,18,21-tetraenamide

C48H83NO13 (881.5864108)


   

(10Z,13Z,16Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradeca-4,8-dien-2-yl]docosa-10,13,16-trienamide

(10Z,13Z,16Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradeca-4,8-dien-2-yl]docosa-10,13,16-trienamide

C48H83NO13 (881.5864108)


   

(10Z,13Z,16Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodeca-4,8-dien-2-yl]tetracosa-10,13,16-trienamide

(10Z,13Z,16Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodeca-4,8-dien-2-yl]tetracosa-10,13,16-trienamide

C48H83NO13 (881.5864108)


   

(9Z,12Z,15Z,18Z,21Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodecan-2-yl]tetracosa-9,12,15,18,21-pentaenamide

(9Z,12Z,15Z,18Z,21Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodecan-2-yl]tetracosa-9,12,15,18,21-pentaenamide

C48H83NO13 (881.5864108)


   

(13Z,16Z,19Z,22Z,25Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctan-2-yl]octacosa-13,16,19,22,25-pentaenamide

(13Z,16Z,19Z,22Z,25Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctan-2-yl]octacosa-13,16,19,22,25-pentaenamide

C48H83NO13 (881.5864108)


   

(10Z,13Z,16Z,19Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradec-4-en-2-yl]docosa-10,13,16,19-tetraenamide

(10Z,13Z,16Z,19Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradec-4-en-2-yl]docosa-10,13,16,19-tetraenamide

C48H83NO13 (881.5864108)


   

(14Z,17Z,20Z,23Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydec-4-en-2-yl]hexacosa-14,17,20,23-tetraenamide

(14Z,17Z,20Z,23Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydec-4-en-2-yl]hexacosa-14,17,20,23-tetraenamide

C48H83NO13 (881.5864108)


   

(3Z,6Z,9Z,12Z,15Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctadecan-2-yl]octadeca-3,6,9,12,15-pentaenamide

(3Z,6Z,9Z,12Z,15Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctadecan-2-yl]octadeca-3,6,9,12,15-pentaenamide

C48H83NO13 (881.5864108)


   

(13Z,16Z)-N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradeca-4,8,12-trien-2-yl]docosa-13,16-dienamide

(13Z,16Z)-N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradeca-4,8,12-trien-2-yl]docosa-13,16-dienamide

C48H83NO13 (881.5864108)


   

(11Z,14Z)-N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypentadeca-4,8,12-trien-2-yl]henicosa-11,14-dienamide

(11Z,14Z)-N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypentadeca-4,8,12-trien-2-yl]henicosa-11,14-dienamide

C48H83NO13 (881.5864108)


   

(16Z,19Z,22Z,25Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]octacosa-16,19,22,25-tetraenamide

(16Z,19Z,22Z,25Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]octacosa-16,19,22,25-tetraenamide

C48H83NO13 (881.5864108)


   

(7Z,10Z,13Z,16Z,19Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradecan-2-yl]docosa-7,10,13,16,19-pentaenamide

(7Z,10Z,13Z,16Z,19Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradecan-2-yl]docosa-7,10,13,16,19-pentaenamide

C48H83NO13 (881.5864108)


   

(11Z,14Z,17Z,20Z,23Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydecan-2-yl]hexacosa-11,14,17,20,23-pentaenamide

(11Z,14Z,17Z,20Z,23Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydecan-2-yl]hexacosa-11,14,17,20,23-pentaenamide

C48H83NO13 (881.5864108)


   

[(2R)-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H84NO8P (881.5934234)


   

[(2R)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H84NO8P (881.5934234)


   

[(2R)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H84NO8P (881.5934234)


   

[(2R)-2,3-bis[[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2,3-bis[[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H84NO8P (881.5934234)


   

[(2R)-2,3-bis[[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2,3-bis[[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H84NO8P (881.5934234)


   

[(2R)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H84NO8P (881.5934234)


   

PC(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

PC(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

C52H84NO8P (881.5934234)


   

PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:4(7Z,10Z,13Z,16Z))

PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:4(7Z,10Z,13Z,16Z))

C52H84NO8P (881.5934234)


   

PC(22:5(4Z,7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,16Z))

PC(22:5(4Z,7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,16Z))

C52H84NO8P (881.5934234)


   

PC(22:5(4Z,7Z,10Z,13Z,16Z)/22:5(7Z,10Z,13Z,16Z,19Z))

PC(22:5(4Z,7Z,10Z,13Z,16Z)/22:5(7Z,10Z,13Z,16Z,19Z))

C52H84NO8P (881.5934234)


   

PC(22:5(7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z))

PC(22:5(7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z))

C52H84NO8P (881.5934234)


   

phosphatidylcholine 44:10

phosphatidylcholine 44:10

C52H84NO8P (881.5934234)


A 1,2-diacyl-sn-glycero-3-phosphocholine in which the acyl groups at C-1 and C-2 contain 44 carbons in total with 10 double bonds.

   

phosphatidylcholine (22:4/22:6)

phosphatidylcholine (22:4/22:6)

C52H84NO8P (881.5934234)


A phosphatidylcholine 44:10 in which the fatty acyl groups at positions 1 and 2 are specified as C22:4 and C22:6 respectively.

   

Hex2Cer(36:5)

Hex2Cer(d16:2_20:3)

C48H83NO13 (881.5864108)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved