Exact Mass: 875.5638

Exact Mass Matches: 875.5638

Found 55 metabolites which its exact mass value is equals to given mass value 875.5638, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

PE(22:2(13Z,16Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

(2-aminoethoxy)[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-[(13Z,16Z)-docosa-13,16-dienoyloxy]propoxy]phosphinic acid

C49H82NO10P (875.5676)


PE(22:2(13Z,16Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:2(13Z,16Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one 13Z,16Z-docosadienoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/22:2(13Z,16Z))

(2-aminoethoxy)[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-[(13Z,16Z)-docosa-13,16-dienoyloxy]propoxy]phosphinic acid

C49H82NO10P (875.5676)


PE(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/22:2(13Z,16Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/22:2(13Z,16Z)), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of 13Z,16Z-docosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:2(13Z,16Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

(2-aminoethoxy)[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-[(13Z,16Z)-docosa-13,16-dienoyloxy]propoxy]phosphinic acid

C49H82NO10P (875.5676)


PE(22:2(13Z,16Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:2(13Z,16Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one 13Z,16Z-docosadienoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/22:2(13Z,16Z))

PE(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/22:2(13Z,16Z))

C49H82NO10P (875.5676)


PE(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/22:2(13Z,16Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/22:2(13Z,16Z)), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of 13Z,16Z-docosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(DiMe(13,5)/20:4(6E,8Z,11Z,14Z)+=O(5))

(2-aminoethoxy)[(2R)-3-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}-2-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphinic acid

C49H82NO10P (875.5676)


PE(DiMe(13,5)/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(DiMe(13,5)/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(6E,8Z,11Z,14Z)+=O(5)/DiMe(13,5))

(2-aminoethoxy)[(2R)-2-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}-3-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphinic acid

C49H82NO10P (875.5676)


PE(20:4(6E,8Z,11Z,14Z)+=O(5)/DiMe(13,5)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(6E,8Z,11Z,14Z)+=O(5)/DiMe(13,5)), in particular, consists of one chain of one 5-oxo-eicosatetraenoyl at the C-1 position and one chain of 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(DiMe(13,5)/20:4(5Z,8Z,11Z,13E)+=O(15))

(2-aminoethoxy)[(2R)-3-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}-2-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphinic acid

C49H82NO10P (875.5676)


PE(DiMe(13,5)/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(DiMe(13,5)/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of one 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(5Z,8Z,11Z,13E)+=O(15)/DiMe(13,5))

(2-aminoethoxy)[(2R)-2-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}-3-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphinic acid

C49H82NO10P (875.5676)


PE(20:4(5Z,8Z,11Z,13E)+=O(15)/DiMe(13,5)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(5Z,8Z,11Z,13E)+=O(15)/DiMe(13,5)), in particular, consists of one chain of one 15-oxo-eicosatetraenoyl at the C-1 position and one chain of 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(DiMe(13,5)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

(2-aminoethoxy)[(2R)-3-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}-2-{[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}propoxy]phosphinic acid

C49H82NO10P (875.5676)


PE(DiMe(13,5)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(DiMe(13,5)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)), in particular, consists of one chain of one 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-1 position and one chain of 18-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/DiMe(13,5))

(2-aminoethoxy)[(2R)-2-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}-3-{[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}propoxy]phosphinic acid

C49H82NO10P (875.5676)


PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/DiMe(13,5)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/DiMe(13,5)), in particular, consists of one chain of one 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(DiMe(13,5)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

(2-aminoethoxy)[(2R)-3-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}-2-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}propoxy]phosphinic acid

C49H82NO10P (875.5676)


PE(DiMe(13,5)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(DiMe(13,5)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)), in particular, consists of one chain of one 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-1 position and one chain of 15-hydroxyleicosapentaenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/DiMe(13,5))

(2-aminoethoxy)[(2R)-2-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}-3-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}propoxy]phosphinic acid

C49H82NO10P (875.5676)


PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/DiMe(13,5)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/DiMe(13,5)), in particular, consists of one chain of one 15-hydroxyleicosapentaenyl at the C-1 position and one chain of 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(DiMe(13,5)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

(2-aminoethoxy)[(2R)-3-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}-2-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}propoxy]phosphinic acid

C49H82NO10P (875.5676)


PE(DiMe(13,5)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(DiMe(13,5)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)), in particular, consists of one chain of one 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-1 position and one chain of 12-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/DiMe(13,5))

(2-aminoethoxy)[(2R)-2-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}-3-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}propoxy]phosphinic acid

C49H82NO10P (875.5676)


PE(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/DiMe(13,5)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/DiMe(13,5)), in particular, consists of one chain of one 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(DiMe(13,5)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

(2-aminoethoxy)[(2R)-3-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}-2-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}propoxy]phosphinic acid

C49H82NO10P (875.5676)


PE(DiMe(13,5)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(DiMe(13,5)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)), in particular, consists of one chain of one 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-1 position and one chain of 5-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/DiMe(13,5))

(2-aminoethoxy)[(2R)-2-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}-3-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}propoxy]phosphinic acid

C49H82NO10P (875.5676)


PE(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/DiMe(13,5)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/DiMe(13,5)), in particular, consists of one chain of one 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   
   

PE(DiMe(13,5)/20:4(6E,8Z,11Z,14Z)+=O(5))

PE(DiMe(13,5)/20:4(6E,8Z,11Z,14Z)+=O(5))

C49H82NO10P (875.5676)


   

PE(20:4(6E,8Z,11Z,14Z)+=O(5)/DiMe(13,5))

PE(20:4(6E,8Z,11Z,14Z)+=O(5)/DiMe(13,5))

C49H82NO10P (875.5676)


   

PE(DiMe(13,5)/20:4(5Z,8Z,11Z,13E)+=O(15))

PE(DiMe(13,5)/20:4(5Z,8Z,11Z,13E)+=O(15))

C49H82NO10P (875.5676)


   

PE(20:4(5Z,8Z,11Z,13E)+=O(15)/DiMe(13,5))

PE(20:4(5Z,8Z,11Z,13E)+=O(15)/DiMe(13,5))

C49H82NO10P (875.5676)


   

PE(DiMe(13,5)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

PE(DiMe(13,5)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C49H82NO10P (875.5676)


   

PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/DiMe(13,5))

PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/DiMe(13,5))

C49H82NO10P (875.5676)


   

PE(DiMe(13,5)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

PE(DiMe(13,5)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C49H82NO10P (875.5676)


   

PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/DiMe(13,5))

PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/DiMe(13,5))

C49H82NO10P (875.5676)


   

PE(DiMe(13,5)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

PE(DiMe(13,5)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C49H82NO10P (875.5676)


   

PE(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/DiMe(13,5))

PE(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/DiMe(13,5))

C49H82NO10P (875.5676)


   

PE(DiMe(13,5)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

PE(DiMe(13,5)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C49H82NO10P (875.5676)


   

PE(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/DiMe(13,5))

PE(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/DiMe(13,5))

C49H82NO10P (875.5676)


   

PE(22:2(13Z,16Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PE(22:2(13Z,16Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C49H82NO10P (875.5676)


   

PE(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/22:2(13Z,16Z))

PE(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/22:2(13Z,16Z))

C49H82NO10P (875.5676)


   

PE(22:2(13Z,16Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PE(22:2(13Z,16Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C49H82NO10P (875.5676)


   

PE(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/22:2(13Z,16Z))

PE(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/22:2(13Z,16Z))

C49H82NO10P (875.5676)


   

Lnaps 26:5/N-17:2

Lnaps 26:5/N-17:2

C49H82NO10P (875.5676)


   

Lnaps 22:6/N-21:1

Lnaps 22:6/N-21:1

C49H82NO10P (875.5676)


   

Lnaps 19:1/N-24:6

Lnaps 19:1/N-24:6

C49H82NO10P (875.5676)


   

Lnaps 26:6/N-17:1

Lnaps 26:6/N-17:1

C49H82NO10P (875.5676)


   

Lnaps 19:0/N-24:7

Lnaps 19:0/N-24:7

C49H82NO10P (875.5676)


   

Lnaps 26:7/N-17:0

Lnaps 26:7/N-17:0

C49H82NO10P (875.5676)


   

Lnaps 24:7/N-19:0

Lnaps 24:7/N-19:0

C49H82NO10P (875.5676)


   

Lnaps 21:1/N-22:6

Lnaps 21:1/N-22:6

C49H82NO10P (875.5676)


   

Lnaps 17:1/N-26:6

Lnaps 17:1/N-26:6

C49H82NO10P (875.5676)


   

Lnaps 24:6/N-19:1

Lnaps 24:6/N-19:1

C49H82NO10P (875.5676)


   

Lnaps 21:2/N-22:5

Lnaps 21:2/N-22:5

C49H82NO10P (875.5676)


   

Lnaps 22:5/N-21:2

Lnaps 22:5/N-21:2

C49H82NO10P (875.5676)


   

Lnaps 17:0/N-26:7

Lnaps 17:0/N-26:7

C49H82NO10P (875.5676)


   

Lnaps 19:2/N-24:5

Lnaps 19:2/N-24:5

C49H82NO10P (875.5676)


   

Lnaps 17:2/N-26:5

Lnaps 17:2/N-26:5

C49H82NO10P (875.5676)


   

Lnaps 24:5/N-19:2

Lnaps 24:5/N-19:2

C49H82NO10P (875.5676)


   

2-amino-3-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-henicos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-henicos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H82NO10P (875.5676)


   

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H82NO10P (875.5676)