Exact Mass: 863.5733436

Exact Mass Matches: 863.5733436

Found 334 metabolites which its exact mass value is equals to given mass value 863.5733436, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

PS(20:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

(2S)-2-amino-3-({[(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-(icosanoyloxy)propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H82NO10P (863.5676042)


PS(20:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(20:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(20:1(11Z)/22:5(4Z,7Z,10Z,13Z,16Z))

(2S)-2-amino-3-({[(2R)-2-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-3-[(11Z)-icos-11-enoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H82NO10P (863.5676042)


PS(20:1(11Z)/22:5(4Z,7Z,10Z,13Z,16Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(20:1(11Z)/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of osbond acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(20:1(11Z)/22:5(7Z,10Z,13Z,16Z,19Z))

(2S)-2-amino-3-({[(2R)-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]-3-[(11Z)-icos-11-enoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H82NO10P (863.5676042)


PS(20:1(11Z)/22:5(7Z,10Z,13Z,16Z,19Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(20:1(11Z)/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of clupanodonic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(20:2(11Z,14Z)/22:4(7Z,10Z,13Z,16Z))

(2S)-2-amino-3-({[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H82NO10P (863.5676042)


PS(20:2(11Z,14Z)/22:4(7Z,10Z,13Z,16Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(20:2(11Z,14Z)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of adrenic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(20:4(5Z,8Z,11Z,14Z)/22:2(13Z,16Z))

(2S)-2-amino-3-({[(2R)-2-[(13Z,16Z)-docosa-13,16-dienoyloxy]-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H82NO10P (863.5676042)


PS(20:4(5Z,8Z,11Z,14Z)/22:2(13Z,16Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(20:4(5Z,8Z,11Z,14Z)/22:2(13Z,16Z)), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(20:4(8Z,11Z,14Z,17Z)/22:2(13Z,16Z))

(2S)-2-amino-3-({[(2R)-2-[(13Z,16Z)-docosa-13,16-dienoyloxy]-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H82NO10P (863.5676042)


PS(20:4(8Z,11Z,14Z,17Z)/22:2(13Z,16Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(20:4(8Z,11Z,14Z,17Z)/22:2(13Z,16Z)), in particular, consists of one chain of eicosatetraenoic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(20:5(5Z,8Z,11Z,14Z,17Z)/22:1(13Z))

(2S)-2-amino-3-({[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H82NO10P (863.5676042)


PS(20:5(5Z,8Z,11Z,14Z,17Z)/22:1(13Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(20:5(5Z,8Z,11Z,14Z,17Z)/22:1(13Z)), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of erucic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(22:1(13Z)/20:5(5Z,8Z,11Z,14Z,17Z))

(2S)-2-amino-3-({[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H82NO10P (863.5676042)


PS(22:1(13Z)/20:5(5Z,8Z,11Z,14Z,17Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(22:1(13Z)/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(22:2(13Z,16Z)/20:4(5Z,8Z,11Z,14Z))

(2S)-2-amino-3-({[(2R)-3-[(13Z,16Z)-docosa-13,16-dienoyloxy]-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H82NO10P (863.5676042)


PS(22:2(13Z,16Z)/20:4(5Z,8Z,11Z,14Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(22:2(13Z,16Z)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(22:2(13Z,16Z)/20:4(8Z,11Z,14Z,17Z))

(2S)-2-amino-3-({[(2R)-3-[(13Z,16Z)-docosa-13,16-dienoyloxy]-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H82NO10P (863.5676042)


PS(22:2(13Z,16Z)/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(22:2(13Z,16Z)/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of eicosatetraenoic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(22:4(7Z,10Z,13Z,16Z)/20:2(11Z,14Z))

(2S)-2-amino-3-({[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H82NO10P (863.5676042)


PS(22:4(7Z,10Z,13Z,16Z)/20:2(11Z,14Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(22:4(7Z,10Z,13Z,16Z)/20:2(11Z,14Z)), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(22:5(4Z,7Z,10Z,13Z,16Z)/20:1(11Z))

(2S)-2-amino-3-({[(2R)-3-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-2-[(11Z)-icos-11-enoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H82NO10P (863.5676042)


PS(22:5(4Z,7Z,10Z,13Z,16Z)/20:1(11Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(22:5(4Z,7Z,10Z,13Z,16Z)/20:1(11Z)), in particular, consists of one chain of osbond acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(22:5(7Z,10Z,13Z,16Z,19Z)/20:1(11Z))

(2S)-2-amino-3-({[(2R)-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]-2-[(11Z)-icos-11-enoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H82NO10P (863.5676042)


PS(22:5(7Z,10Z,13Z,16Z,19Z)/20:1(11Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(22:5(7Z,10Z,13Z,16Z,19Z)/20:1(11Z)), in particular, consists of one chain of clupanodonic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:0)

(2S)-2-amino-3-({[(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-2-(icosanoyloxy)propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H82NO10P (863.5676042)


PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:0) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of arachidic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

11-((2-Dimethylaminoethyl)oxymethyl)erythromycin A 9-methoxime

6-{[4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-12-{[2-(dimethylamino)ethoxy]methoxy}-14-ethyl-7,13-dihydroxy-4-[(5-hydroxy-4-methoxy-4,6-dimethyloxan-2-yl)oxy]-10-(methoxyimino)-3,5,7,9,11,13-hexamethyl-1-oxacyclotetradecan-2-one

C43H81N3O14 (863.5718246)


   

PC(18:1(11Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

(2-{[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-[(11Z)-octadec-11-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(18:1(11Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:1(11Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one 11Z-octadecenoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:1(11Z))

(2-{[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-[(11Z)-octadec-11-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:1(11Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:1(11Z)), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:1(11Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

(2-{[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-[(11Z)-octadec-11-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(18:1(11Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:1(11Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one 11Z-octadecenoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:1(11Z))

(2-{[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-[(11Z)-octadec-11-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:1(11Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:1(11Z)), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:1(9Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

(2-{[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-[(9Z)-octadec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(18:1(9Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:1(9Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one 9Z-octadecenoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:1(9Z))

(2-{[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-[(9Z)-octadec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:1(9Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:1(9Z)), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:1(9Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

(2-{[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-[(9Z)-octadec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(18:1(9Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:1(9Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one 9Z-octadecenoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:1(9Z))

(2-{[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-[(9Z)-octadec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:1(9Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:1(9Z)), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:2(11Z,14Z)/PGJ2)

(2-{[(2R)-2-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:2(11Z,14Z)/PGJ2) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:2(11Z,14Z)/PGJ2), in particular, consists of one chain of one 11Z,14Z-eicosadienoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(PGJ2/20:2(11Z,14Z))

(2-{[(2R)-3-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(PGJ2/20:2(11Z,14Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(PGJ2/20:2(11Z,14Z)), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of 11Z,14Z-eicosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(5Z,8Z,11Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

(2-{[(2R)-2-{[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:3(5Z,8Z,11Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(5Z,8Z,11Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of one 5Z,8Z,11Z-eicosatrienoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:3(5Z,8Z,11Z))

(2-{[(2R)-3-{[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:3(5Z,8Z,11Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of one Leukotriene B4 at the C-1 position and one chain of 5Z,8Z,11Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(5Z,8Z,11Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

(2-{[(2R)-2-{[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:3(5Z,8Z,11Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(5Z,8Z,11Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of one 5Z,8Z,11Z-eicosatrienoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:3(5Z,8Z,11Z))

(2-{[(2R)-3-{[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:3(5Z,8Z,11Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of one 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 5Z,8Z,11Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(5Z,8Z,11Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

(2-{[(2R)-2-{[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:3(5Z,8Z,11Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(5Z,8Z,11Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of one 5Z,8Z,11Z-eicosatrienoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:3(5Z,8Z,11Z))

(2-{[(2R)-3-{[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:3(5Z,8Z,11Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of one 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 5Z,8Z,11Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(8Z,11Z,14Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

(2-{[(2R)-2-{[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:3(8Z,11Z,14Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(8Z,11Z,14Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of one 8Z,11Z,14Z-eicosatrienoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:3(8Z,11Z,14Z))

(2-{[(2R)-3-{[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:3(8Z,11Z,14Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of one Leukotriene B4 at the C-1 position and one chain of 8Z,11Z,14Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(8Z,11Z,14Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

(2-{[(2R)-2-{[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:3(8Z,11Z,14Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(8Z,11Z,14Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of one 8Z,11Z,14Z-eicosatrienoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:3(8Z,11Z,14Z))

(2-{[(2R)-3-{[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:3(8Z,11Z,14Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of one 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 8Z,11Z,14Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(8Z,11Z,14Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

(2-{[(2R)-2-{[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:3(8Z,11Z,14Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(8Z,11Z,14Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of one 8Z,11Z,14Z-eicosatrienoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:3(8Z,11Z,14Z))

(2-{[(2R)-3-{[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:3(8Z,11Z,14Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of one 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 8Z,11Z,14Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,14Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

(2-{[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:4(5Z,8Z,11Z,14Z)/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,14Z)/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(8Z,11Z,14Z)-2OH(5,6)/20:4(5Z,8Z,11Z,14Z))

(2-{[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:3(8Z,11Z,14Z)-2OH(5,6)/20:4(5Z,8Z,11Z,14Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(8Z,11Z,14Z)-2OH(5,6)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(8Z,11Z,14Z,17Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

(2-{[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:4(8Z,11Z,14Z,17Z)/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(8Z,11Z,14Z,17Z)/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(8Z,11Z,14Z)-2OH(5,6)/20:4(8Z,11Z,14Z,17Z))

(2-{[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:3(8Z,11Z,14Z)-2OH(5,6)/20:4(8Z,11Z,14Z,17Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(8Z,11Z,14Z)-2OH(5,6)/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:1(12Z)-2OH(9,10))

(2-{[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:1(12Z)-2OH(9,10)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

(2-{[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(18:1(12Z)-2OH(9,10)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:1(12Z)-2OH(9,10)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(11,3)/20:3(5Z,8Z,11Z)-O(14R,15S))

(2-{[(2R)-3-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyl]oxy}-2-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(DiMe(11,3)/20:3(5Z,8Z,11Z)-O(14R,15S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(11,3)/20:3(5Z,8Z,11Z)-O(14R,15S)), in particular, consists of one chain of one 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-1 position and one chain of 14,15-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(5Z,8Z,11Z)-O(14R,15S)/DiMe(11,3))

(2-{[(2R)-2-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyl]oxy}-3-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:3(5Z,8Z,11Z)-O(14R,15S)/DiMe(11,3)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(5Z,8Z,11Z)-O(14R,15S)/DiMe(11,3)), in particular, consists of one chain of one 14,15-epoxyeicosatrienoyl at the C-1 position and one chain of 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(11,3)/20:3(5Z,8Z,14Z)-O(11S,12R))

(2-{[(2R)-3-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyl]oxy}-2-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(DiMe(11,3)/20:3(5Z,8Z,14Z)-O(11S,12R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(11,3)/20:3(5Z,8Z,14Z)-O(11S,12R)), in particular, consists of one chain of one 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-1 position and one chain of 11,12-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(5Z,8Z,14Z)-O(11S,12R)/DiMe(11,3))

(2-{[(2R)-2-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyl]oxy}-3-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:3(5Z,8Z,14Z)-O(11S,12R)/DiMe(11,3)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(5Z,8Z,14Z)-O(11S,12R)/DiMe(11,3)), in particular, consists of one chain of one 11,12-epoxyeicosatrienoyl at the C-1 position and one chain of 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(11,3)/20:3(5Z,11Z,14Z)-O(8,9))

(2-{[(2R)-3-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyl]oxy}-2-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(DiMe(11,3)/20:3(5Z,11Z,14Z)-O(8,9)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(11,3)/20:3(5Z,11Z,14Z)-O(8,9)), in particular, consists of one chain of one 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-1 position and one chain of 8,9--epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(5Z,11Z,14Z)-O(8,9)/DiMe(11,3))

(2-{[(2R)-2-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyl]oxy}-3-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:3(5Z,11Z,14Z)-O(8,9)/DiMe(11,3)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(5Z,11Z,14Z)-O(8,9)/DiMe(11,3)), in particular, consists of one chain of one 8,9--epoxyeicosatrienoyl at the C-1 position and one chain of 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(11,3)/20:3(8Z,11Z,14Z)-O(5,6))

(2-{[(2R)-3-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyl]oxy}-2-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(DiMe(11,3)/20:3(8Z,11Z,14Z)-O(5,6)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(11,3)/20:3(8Z,11Z,14Z)-O(5,6)), in particular, consists of one chain of one 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-1 position and one chain of 5,6-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(8Z,11Z,14Z)-O(5,6)/DiMe(11,3))

(2-{[(2R)-2-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyl]oxy}-3-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:3(8Z,11Z,14Z)-O(5,6)/DiMe(11,3)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(8Z,11Z,14Z)-O(5,6)/DiMe(11,3)), in particular, consists of one chain of one 5,6-epoxyeicosatrienoyl at the C-1 position and one chain of 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(11,3)/20:4(5Z,8Z,11Z,14Z)-OH(20))

(2-{[(2R)-3-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyl]oxy}-2-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(DiMe(11,3)/20:4(5Z,8Z,11Z,14Z)-OH(20)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(11,3)/20:4(5Z,8Z,11Z,14Z)-OH(20)), in particular, consists of one chain of one 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-1 position and one chain of 20-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,14Z)-OH(20)/DiMe(11,3))

(2-{[(2R)-2-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyl]oxy}-3-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:4(5Z,8Z,11Z,14Z)-OH(20)/DiMe(11,3)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,14Z)-OH(20)/DiMe(11,3)), in particular, consists of one chain of one 20-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(11,3)/20:4(6E,8Z,11Z,14Z)-OH(5S))

(2-{[(2R)-3-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyl]oxy}-2-{[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(DiMe(11,3)/20:4(6E,8Z,11Z,14Z)-OH(5S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(11,3)/20:4(6E,8Z,11Z,14Z)-OH(5S)), in particular, consists of one chain of one 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-1 position and one chain of 5-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(6E,8Z,11Z,14Z)-OH(5S)/DiMe(11,3))

(2-{[(2R)-2-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyl]oxy}-3-{[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:4(6E,8Z,11Z,14Z)-OH(5S)/DiMe(11,3)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(6E,8Z,11Z,14Z)-OH(5S)/DiMe(11,3)), in particular, consists of one chain of one 5-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(11,3)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

(2-{[(2R)-3-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyl]oxy}-2-{[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(DiMe(11,3)/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(11,3)/20:4(5Z,8Z,11Z,14Z)-OH(19S)), in particular, consists of one chain of one 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-1 position and one chain of 19-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,14Z)-OH(19S)/DiMe(11,3))

(2-{[(2R)-2-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyl]oxy}-3-{[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:4(5Z,8Z,11Z,14Z)-OH(19S)/DiMe(11,3)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,14Z)-OH(19S)/DiMe(11,3)), in particular, consists of one chain of one 19-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(11,3)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

(2-{[(2R)-3-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyl]oxy}-2-{[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(DiMe(11,3)/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(11,3)/20:4(5Z,8Z,11Z,14Z)-OH(18R)), in particular, consists of one chain of one 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-1 position and one chain of 18-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,14Z)-OH(18R)/DiMe(11,3))

(2-{[(2R)-2-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyl]oxy}-3-{[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:4(5Z,8Z,11Z,14Z)-OH(18R)/DiMe(11,3)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,14Z)-OH(18R)/DiMe(11,3)), in particular, consists of one chain of one 18-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(11,3)/20:4(5Z,8Z,11Z,14Z)-OH(17))

(2-{[(2R)-3-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyl]oxy}-2-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(DiMe(11,3)/20:4(5Z,8Z,11Z,14Z)-OH(17)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(11,3)/20:4(5Z,8Z,11Z,14Z)-OH(17)), in particular, consists of one chain of one 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-1 position and one chain of 17-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,14Z)-OH(17)/DiMe(11,3))

(2-{[(2R)-2-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyl]oxy}-3-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:4(5Z,8Z,11Z,14Z)-OH(17)/DiMe(11,3)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,14Z)-OH(17)/DiMe(11,3)), in particular, consists of one chain of one 17-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(11,3)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

(2-{[(2R)-3-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyl]oxy}-2-{[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(DiMe(11,3)/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(11,3)/20:4(5Z,8Z,11Z,14Z)-OH(16R)), in particular, consists of one chain of one 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-1 position and one chain of 16-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,14Z)-OH(16R)/DiMe(11,3))

(2-{[(2R)-2-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyl]oxy}-3-{[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:4(5Z,8Z,11Z,14Z)-OH(16R)/DiMe(11,3)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,14Z)-OH(16R)/DiMe(11,3)), in particular, consists of one chain of one 16-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(11,3)/20:4(5Z,8Z,11Z,13E)-OH(15S))

(2-{[(2R)-3-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyl]oxy}-2-{[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(DiMe(11,3)/20:4(5Z,8Z,11Z,13E)-OH(15S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(11,3)/20:4(5Z,8Z,11Z,13E)-OH(15S)), in particular, consists of one chain of one 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-1 position and one chain of 15-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,13E)-OH(15S)/DiMe(11,3))

(2-{[(2R)-2-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyl]oxy}-3-{[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:4(5Z,8Z,11Z,13E)-OH(15S)/DiMe(11,3)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,13E)-OH(15S)/DiMe(11,3)), in particular, consists of one chain of one 15-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(11,3)/20:4(5Z,8Z,10E,14Z)-OH(12S))

(2-{[(2R)-3-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyl]oxy}-2-{[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(DiMe(11,3)/20:4(5Z,8Z,10E,14Z)-OH(12S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(11,3)/20:4(5Z,8Z,10E,14Z)-OH(12S)), in particular, consists of one chain of one 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-1 position and one chain of 12-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,10E,14Z)-OH(12S)/DiMe(11,3))

(2-{[(2R)-2-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyl]oxy}-3-{[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:4(5Z,8Z,10E,14Z)-OH(12S)/DiMe(11,3)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,10E,14Z)-OH(12S)/DiMe(11,3)), in particular, consists of one chain of one 12-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(11,3)/20:4(5E,8Z,12Z,14Z)-OH(11R))

(2-{[(2R)-3-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyl]oxy}-2-{[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(DiMe(11,3)/20:4(5E,8Z,12Z,14Z)-OH(11R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(11,3)/20:4(5E,8Z,12Z,14Z)-OH(11R)), in particular, consists of one chain of one 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-1 position and one chain of 11-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5E,8Z,12Z,14Z)-OH(11R)/DiMe(11,3))

(2-{[(2R)-2-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyl]oxy}-3-{[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:4(5E,8Z,12Z,14Z)-OH(11R)/DiMe(11,3)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5E,8Z,12Z,14Z)-OH(11R)/DiMe(11,3)), in particular, consists of one chain of one 11-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(11,3)/20:4(5Z,7E,11Z,14Z)-OH(9))

(2-{[(2R)-3-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyl]oxy}-2-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(DiMe(11,3)/20:4(5Z,7E,11Z,14Z)-OH(9)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(11,3)/20:4(5Z,7E,11Z,14Z)-OH(9)), in particular, consists of one chain of one 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-1 position and one chain of 9-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,7E,11Z,14Z)-OH(9)/DiMe(11,3))

(2-{[(2R)-2-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyl]oxy}-3-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:4(5Z,7E,11Z,14Z)-OH(9)/DiMe(11,3)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,7E,11Z,14Z)-OH(9)/DiMe(11,3)), in particular, consists of one chain of one 9-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(9,5)/20:3(5Z,8Z,11Z)-O(14R,15S))

(2-{[(2R)-3-{[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyl]oxy}-2-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(DiMe(9,5)/20:3(5Z,8Z,11Z)-O(14R,15S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(9,5)/20:3(5Z,8Z,11Z)-O(14R,15S)), in particular, consists of one chain of one 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoyl at the C-1 position and one chain of 14,15-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(5Z,8Z,11Z)-O(14R,15S)/DiMe(9,5))

(2-{[(2R)-2-{[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyl]oxy}-3-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:3(5Z,8Z,11Z)-O(14R,15S)/DiMe(9,5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(5Z,8Z,11Z)-O(14R,15S)/DiMe(9,5)), in particular, consists of one chain of one 14,15-epoxyeicosatrienoyl at the C-1 position and one chain of 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(9,5)/20:3(5Z,8Z,14Z)-O(11S,12R))

(2-{[(2R)-3-{[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyl]oxy}-2-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(DiMe(9,5)/20:3(5Z,8Z,14Z)-O(11S,12R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(9,5)/20:3(5Z,8Z,14Z)-O(11S,12R)), in particular, consists of one chain of one 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoyl at the C-1 position and one chain of 11,12-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(5Z,8Z,14Z)-O(11S,12R)/DiMe(9,5))

(2-{[(2R)-2-{[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyl]oxy}-3-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:3(5Z,8Z,14Z)-O(11S,12R)/DiMe(9,5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(5Z,8Z,14Z)-O(11S,12R)/DiMe(9,5)), in particular, consists of one chain of one 11,12-epoxyeicosatrienoyl at the C-1 position and one chain of 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(9,5)/20:3(5Z,11Z,14Z)-O(8,9))

(2-{[(2R)-3-{[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyl]oxy}-2-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(DiMe(9,5)/20:3(5Z,11Z,14Z)-O(8,9)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(9,5)/20:3(5Z,11Z,14Z)-O(8,9)), in particular, consists of one chain of one 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoyl at the C-1 position and one chain of 8,9--epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(5Z,11Z,14Z)-O(8,9)/DiMe(9,5))

(2-{[(2R)-2-{[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyl]oxy}-3-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:3(5Z,11Z,14Z)-O(8,9)/DiMe(9,5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(5Z,11Z,14Z)-O(8,9)/DiMe(9,5)), in particular, consists of one chain of one 8,9--epoxyeicosatrienoyl at the C-1 position and one chain of 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(9,5)/20:3(8Z,11Z,14Z)-O(5,6))

(2-{[(2R)-3-{[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyl]oxy}-2-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(DiMe(9,5)/20:3(8Z,11Z,14Z)-O(5,6)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(9,5)/20:3(8Z,11Z,14Z)-O(5,6)), in particular, consists of one chain of one 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoyl at the C-1 position and one chain of 5,6-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(8Z,11Z,14Z)-O(5,6)/DiMe(9,5))

(2-{[(2R)-2-{[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyl]oxy}-3-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:3(8Z,11Z,14Z)-O(5,6)/DiMe(9,5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(8Z,11Z,14Z)-O(5,6)/DiMe(9,5)), in particular, consists of one chain of one 5,6-epoxyeicosatrienoyl at the C-1 position and one chain of 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(9,5)/20:4(5Z,8Z,11Z,14Z)-OH(20))

(2-{[(2R)-3-{[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyl]oxy}-2-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(DiMe(9,5)/20:4(5Z,8Z,11Z,14Z)-OH(20)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(9,5)/20:4(5Z,8Z,11Z,14Z)-OH(20)), in particular, consists of one chain of one 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoyl at the C-1 position and one chain of 20-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,14Z)-OH(20)/DiMe(9,5))

(2-{[(2R)-2-{[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyl]oxy}-3-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:4(5Z,8Z,11Z,14Z)-OH(20)/DiMe(9,5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,14Z)-OH(20)/DiMe(9,5)), in particular, consists of one chain of one 20-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(9,5)/20:4(6E,8Z,11Z,14Z)-OH(5S))

(2-{[(2R)-3-{[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyl]oxy}-2-{[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(DiMe(9,5)/20:4(6E,8Z,11Z,14Z)-OH(5S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(9,5)/20:4(6E,8Z,11Z,14Z)-OH(5S)), in particular, consists of one chain of one 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoyl at the C-1 position and one chain of 5-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(6E,8Z,11Z,14Z)-OH(5S)/DiMe(9,5))

(2-{[(2R)-2-{[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyl]oxy}-3-{[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:4(6E,8Z,11Z,14Z)-OH(5S)/DiMe(9,5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(6E,8Z,11Z,14Z)-OH(5S)/DiMe(9,5)), in particular, consists of one chain of one 5-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(9,5)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

(2-{[(2R)-3-{[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyl]oxy}-2-{[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(DiMe(9,5)/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(9,5)/20:4(5Z,8Z,11Z,14Z)-OH(19S)), in particular, consists of one chain of one 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoyl at the C-1 position and one chain of 19-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,14Z)-OH(19S)/DiMe(9,5))

(2-{[(2R)-2-{[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyl]oxy}-3-{[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:4(5Z,8Z,11Z,14Z)-OH(19S)/DiMe(9,5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,14Z)-OH(19S)/DiMe(9,5)), in particular, consists of one chain of one 19-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(9,5)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

(2-{[(2R)-3-{[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyl]oxy}-2-{[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(DiMe(9,5)/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(9,5)/20:4(5Z,8Z,11Z,14Z)-OH(18R)), in particular, consists of one chain of one 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoyl at the C-1 position and one chain of 18-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,14Z)-OH(18R)/DiMe(9,5))

(2-{[(2R)-2-{[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyl]oxy}-3-{[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:4(5Z,8Z,11Z,14Z)-OH(18R)/DiMe(9,5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,14Z)-OH(18R)/DiMe(9,5)), in particular, consists of one chain of one 18-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(9,5)/20:4(5Z,8Z,11Z,14Z)-OH(17))

(2-{[(2R)-3-{[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyl]oxy}-2-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(DiMe(9,5)/20:4(5Z,8Z,11Z,14Z)-OH(17)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(9,5)/20:4(5Z,8Z,11Z,14Z)-OH(17)), in particular, consists of one chain of one 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoyl at the C-1 position and one chain of 17-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,14Z)-OH(17)/DiMe(9,5))

(2-{[(2R)-2-{[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyl]oxy}-3-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:4(5Z,8Z,11Z,14Z)-OH(17)/DiMe(9,5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,14Z)-OH(17)/DiMe(9,5)), in particular, consists of one chain of one 17-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(9,5)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

(2-{[(2R)-3-{[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyl]oxy}-2-{[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(DiMe(9,5)/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(9,5)/20:4(5Z,8Z,11Z,14Z)-OH(16R)), in particular, consists of one chain of one 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoyl at the C-1 position and one chain of 16-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,14Z)-OH(16R)/DiMe(9,5))

(2-{[(2R)-2-{[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyl]oxy}-3-{[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:4(5Z,8Z,11Z,14Z)-OH(16R)/DiMe(9,5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,14Z)-OH(16R)/DiMe(9,5)), in particular, consists of one chain of one 16-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(9,5)/20:4(5Z,8Z,11Z,13E)-OH(15S))

(2-{[(2R)-3-{[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyl]oxy}-2-{[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(DiMe(9,5)/20:4(5Z,8Z,11Z,13E)-OH(15S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(9,5)/20:4(5Z,8Z,11Z,13E)-OH(15S)), in particular, consists of one chain of one 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoyl at the C-1 position and one chain of 15-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,13E)-OH(15S)/DiMe(9,5))

(2-{[(2R)-2-{[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyl]oxy}-3-{[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:4(5Z,8Z,11Z,13E)-OH(15S)/DiMe(9,5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,13E)-OH(15S)/DiMe(9,5)), in particular, consists of one chain of one 15-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(9,5)/20:4(5Z,8Z,10E,14Z)-OH(12S))

(2-{[(2R)-3-{[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyl]oxy}-2-{[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(DiMe(9,5)/20:4(5Z,8Z,10E,14Z)-OH(12S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(9,5)/20:4(5Z,8Z,10E,14Z)-OH(12S)), in particular, consists of one chain of one 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoyl at the C-1 position and one chain of 12-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,10E,14Z)-OH(12S)/DiMe(9,5))

(2-{[(2R)-2-{[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyl]oxy}-3-{[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:4(5Z,8Z,10E,14Z)-OH(12S)/DiMe(9,5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,10E,14Z)-OH(12S)/DiMe(9,5)), in particular, consists of one chain of one 12-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(9,5)/20:4(5E,8Z,12Z,14Z)-OH(11R))

(2-{[(2R)-3-{[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyl]oxy}-2-{[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(DiMe(9,5)/20:4(5E,8Z,12Z,14Z)-OH(11R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(9,5)/20:4(5E,8Z,12Z,14Z)-OH(11R)), in particular, consists of one chain of one 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoyl at the C-1 position and one chain of 11-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5E,8Z,12Z,14Z)-OH(11R)/DiMe(9,5))

(2-{[(2R)-2-{[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyl]oxy}-3-{[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:4(5E,8Z,12Z,14Z)-OH(11R)/DiMe(9,5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5E,8Z,12Z,14Z)-OH(11R)/DiMe(9,5)), in particular, consists of one chain of one 11-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(9,5)/20:4(5Z,7E,11Z,14Z)-OH(9))

(2-{[(2R)-3-{[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyl]oxy}-2-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(DiMe(9,5)/20:4(5Z,7E,11Z,14Z)-OH(9)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(9,5)/20:4(5Z,7E,11Z,14Z)-OH(9)), in particular, consists of one chain of one 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoyl at the C-1 position and one chain of 9-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,7E,11Z,14Z)-OH(9)/DiMe(9,5))

(2-{[(2R)-2-{[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyl]oxy}-3-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H82NO10P (863.5676042)


PC(20:4(5Z,7E,11Z,14Z)-OH(9)/DiMe(9,5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,7E,11Z,14Z)-OH(9)/DiMe(9,5)), in particular, consists of one chain of one 9-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PS(20:2(11Z,14Z)/22:4(7Z,10Z,13Z,16Z))

1-(11Z,14Z-eicosadienoyl)-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-glycero-3-phosphoserine

C48H82NO10P (863.5676042)


   

PS(20:4(5Z,8Z,11Z,14Z)/22:2(13Z,16Z))

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2-(13Z,16Z-docosadienoyl)-glycero-3-phosphoserine

C48H82NO10P (863.5676042)


   

PS(20:5(5Z,8Z,11Z,14Z,17Z)/22:1(11Z))

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-(11Z-docosenoyl)-glycero-3-phosphoserine

C48H82NO10P (863.5676042)


   

PS(22:1(11Z)/20:5(5Z,8Z,11Z,14Z,17Z))

1-(11Z-docosenoyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phosphoserine

C48H82NO10P (863.5676042)


   

PS(22:2(13Z,16Z)/20:4(5Z,8Z,11Z,14Z))

1-(13Z,16Z-docosadienoyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-glycero-3-phosphoserine

C48H82NO10P (863.5676042)


   

PS(22:4(7Z,10Z,13Z,16Z)/20:2(11Z,14Z))

1-(7Z,10Z,13Z,16Z-docosatetraenoyl)-2-(11Z,14Z-eicosadienoyl)-glycero-3-phosphoserine

C48H82NO10P (863.5676042)


   

PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:0)

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-eicosanoyl-glycero-3-phosphoserine

C48H82NO10P (863.5676042)


   

PS(20:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

1-eicosanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-glycero-3-phosphoserine

C48H82NO10P (863.5676042)


   

PS 42:6

1-(7Z,10Z,13Z,16Z-docosatetraenoyl)-2-(11Z,14Z-eicosadienoyl)-glycero-3-phosphoserine

C48H82NO10P (863.5676042)


   

1-18:0-2-18:1-Phosphatidylinositol

1-18:0-2-18:1-Phosphatidylinositol

C45H84O13P- (863.5649244)


   
   
   

PC(DiMe(9,5)/20:3(5Z,11Z,14Z)-O(8,9))

PC(DiMe(9,5)/20:3(5Z,11Z,14Z)-O(8,9))

C48H82NO10P (863.5676042)


   

PC(20:3(5Z,11Z,14Z)-O(8,9)/DiMe(9,5))

PC(20:3(5Z,11Z,14Z)-O(8,9)/DiMe(9,5))

C48H82NO10P (863.5676042)


   

PC(DiMe(9,5)/20:3(8Z,11Z,14Z)-O(5,6))

PC(DiMe(9,5)/20:3(8Z,11Z,14Z)-O(5,6))

C48H82NO10P (863.5676042)


   

PC(20:3(8Z,11Z,14Z)-O(5,6)/DiMe(9,5))

PC(20:3(8Z,11Z,14Z)-O(5,6)/DiMe(9,5))

C48H82NO10P (863.5676042)


   

PC(DiMe(11,3)/20:3(5Z,8Z,11Z)-O(14R,15S))

PC(DiMe(11,3)/20:3(5Z,8Z,11Z)-O(14R,15S))

C48H82NO10P (863.5676042)


   

PC(20:3(5Z,8Z,11Z)-O(14R,15S)/DiMe(11,3))

PC(20:3(5Z,8Z,11Z)-O(14R,15S)/DiMe(11,3))

C48H82NO10P (863.5676042)


   

PC(DiMe(11,3)/20:3(5Z,8Z,14Z)-O(11S,12R))

PC(DiMe(11,3)/20:3(5Z,8Z,14Z)-O(11S,12R))

C48H82NO10P (863.5676042)


   

PC(20:3(5Z,8Z,14Z)-O(11S,12R)/DiMe(11,3))

PC(20:3(5Z,8Z,14Z)-O(11S,12R)/DiMe(11,3))

C48H82NO10P (863.5676042)


   

PC(DiMe(11,3)/20:3(5Z,11Z,14Z)-O(8,9))

PC(DiMe(11,3)/20:3(5Z,11Z,14Z)-O(8,9))

C48H82NO10P (863.5676042)


   

PC(20:3(5Z,11Z,14Z)-O(8,9)/DiMe(11,3))

PC(20:3(5Z,11Z,14Z)-O(8,9)/DiMe(11,3))

C48H82NO10P (863.5676042)


   

PC(DiMe(11,3)/20:3(8Z,11Z,14Z)-O(5,6))

PC(DiMe(11,3)/20:3(8Z,11Z,14Z)-O(5,6))

C48H82NO10P (863.5676042)


   

PC(20:3(8Z,11Z,14Z)-O(5,6)/DiMe(11,3))

PC(20:3(8Z,11Z,14Z)-O(5,6)/DiMe(11,3))

C48H82NO10P (863.5676042)


   

PC(DiMe(11,3)/20:4(5Z,8Z,11Z,14Z)-OH(20))

PC(DiMe(11,3)/20:4(5Z,8Z,11Z,14Z)-OH(20))

C48H82NO10P (863.5676042)


   

PC(20:4(5Z,8Z,11Z,14Z)-OH(20)/DiMe(11,3))

PC(20:4(5Z,8Z,11Z,14Z)-OH(20)/DiMe(11,3))

C48H82NO10P (863.5676042)


   

PC(DiMe(11,3)/20:4(6E,8Z,11Z,14Z)-OH(5S))

PC(DiMe(11,3)/20:4(6E,8Z,11Z,14Z)-OH(5S))

C48H82NO10P (863.5676042)


   

PC(20:4(6E,8Z,11Z,14Z)-OH(5S)/DiMe(11,3))

PC(20:4(6E,8Z,11Z,14Z)-OH(5S)/DiMe(11,3))

C48H82NO10P (863.5676042)


   

PC(DiMe(11,3)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

PC(DiMe(11,3)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C48H82NO10P (863.5676042)


   

PC(20:4(5Z,8Z,11Z,14Z)-OH(19S)/DiMe(11,3))

PC(20:4(5Z,8Z,11Z,14Z)-OH(19S)/DiMe(11,3))

C48H82NO10P (863.5676042)


   

PC(DiMe(11,3)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

PC(DiMe(11,3)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C48H82NO10P (863.5676042)


   

PC(20:4(5Z,8Z,11Z,14Z)-OH(18R)/DiMe(11,3))

PC(20:4(5Z,8Z,11Z,14Z)-OH(18R)/DiMe(11,3))

C48H82NO10P (863.5676042)


   

PC(DiMe(11,3)/20:4(5Z,8Z,11Z,14Z)-OH(17))

PC(DiMe(11,3)/20:4(5Z,8Z,11Z,14Z)-OH(17))

C48H82NO10P (863.5676042)


   

PC(20:4(5Z,8Z,11Z,14Z)-OH(17)/DiMe(11,3))

PC(20:4(5Z,8Z,11Z,14Z)-OH(17)/DiMe(11,3))

C48H82NO10P (863.5676042)


   

PC(DiMe(11,3)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

PC(DiMe(11,3)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C48H82NO10P (863.5676042)


   

PC(20:4(5Z,8Z,11Z,14Z)-OH(16R)/DiMe(11,3))

PC(20:4(5Z,8Z,11Z,14Z)-OH(16R)/DiMe(11,3))

C48H82NO10P (863.5676042)


   

PC(DiMe(11,3)/20:4(5Z,8Z,11Z,13E)-OH(15S))

PC(DiMe(11,3)/20:4(5Z,8Z,11Z,13E)-OH(15S))

C48H82NO10P (863.5676042)


   

PC(20:4(5Z,8Z,11Z,13E)-OH(15S)/DiMe(11,3))

PC(20:4(5Z,8Z,11Z,13E)-OH(15S)/DiMe(11,3))

C48H82NO10P (863.5676042)


   

PC(DiMe(11,3)/20:4(5Z,8Z,10E,14Z)-OH(12S))

PC(DiMe(11,3)/20:4(5Z,8Z,10E,14Z)-OH(12S))

C48H82NO10P (863.5676042)


   

PC(20:4(5Z,8Z,10E,14Z)-OH(12S)/DiMe(11,3))

PC(20:4(5Z,8Z,10E,14Z)-OH(12S)/DiMe(11,3))

C48H82NO10P (863.5676042)


   

PC(DiMe(11,3)/20:4(5E,8Z,12Z,14Z)-OH(11R))

PC(DiMe(11,3)/20:4(5E,8Z,12Z,14Z)-OH(11R))

C48H82NO10P (863.5676042)


   

PC(20:4(5E,8Z,12Z,14Z)-OH(11R)/DiMe(11,3))

PC(20:4(5E,8Z,12Z,14Z)-OH(11R)/DiMe(11,3))

C48H82NO10P (863.5676042)


   

PC(DiMe(11,3)/20:4(5Z,7E,11Z,14Z)-OH(9))

PC(DiMe(11,3)/20:4(5Z,7E,11Z,14Z)-OH(9))

C48H82NO10P (863.5676042)


   

PC(20:4(5Z,7E,11Z,14Z)-OH(9)/DiMe(11,3))

PC(20:4(5Z,7E,11Z,14Z)-OH(9)/DiMe(11,3))

C48H82NO10P (863.5676042)


   

PC(DiMe(9,5)/20:3(5Z,8Z,11Z)-O(14R,15S))

PC(DiMe(9,5)/20:3(5Z,8Z,11Z)-O(14R,15S))

C48H82NO10P (863.5676042)


   

PC(20:3(5Z,8Z,11Z)-O(14R,15S)/DiMe(9,5))

PC(20:3(5Z,8Z,11Z)-O(14R,15S)/DiMe(9,5))

C48H82NO10P (863.5676042)


   

PC(DiMe(9,5)/20:3(5Z,8Z,14Z)-O(11S,12R))

PC(DiMe(9,5)/20:3(5Z,8Z,14Z)-O(11S,12R))

C48H82NO10P (863.5676042)


   

PC(20:3(5Z,8Z,14Z)-O(11S,12R)/DiMe(9,5))

PC(20:3(5Z,8Z,14Z)-O(11S,12R)/DiMe(9,5))

C48H82NO10P (863.5676042)


   

PC(DiMe(9,5)/20:4(5Z,8Z,11Z,14Z)-OH(20))

PC(DiMe(9,5)/20:4(5Z,8Z,11Z,14Z)-OH(20))

C48H82NO10P (863.5676042)


   

PC(20:4(5Z,8Z,11Z,14Z)-OH(20)/DiMe(9,5))

PC(20:4(5Z,8Z,11Z,14Z)-OH(20)/DiMe(9,5))

C48H82NO10P (863.5676042)


   

PC(DiMe(9,5)/20:4(6E,8Z,11Z,14Z)-OH(5S))

PC(DiMe(9,5)/20:4(6E,8Z,11Z,14Z)-OH(5S))

C48H82NO10P (863.5676042)


   

PC(20:4(6E,8Z,11Z,14Z)-OH(5S)/DiMe(9,5))

PC(20:4(6E,8Z,11Z,14Z)-OH(5S)/DiMe(9,5))

C48H82NO10P (863.5676042)


   

PC(DiMe(9,5)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

PC(DiMe(9,5)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C48H82NO10P (863.5676042)


   

PC(20:4(5Z,8Z,11Z,14Z)-OH(19S)/DiMe(9,5))

PC(20:4(5Z,8Z,11Z,14Z)-OH(19S)/DiMe(9,5))

C48H82NO10P (863.5676042)


   

PC(DiMe(9,5)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

PC(DiMe(9,5)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C48H82NO10P (863.5676042)


   

PC(20:4(5Z,8Z,11Z,14Z)-OH(18R)/DiMe(9,5))

PC(20:4(5Z,8Z,11Z,14Z)-OH(18R)/DiMe(9,5))

C48H82NO10P (863.5676042)


   

PC(DiMe(9,5)/20:4(5Z,8Z,11Z,14Z)-OH(17))

PC(DiMe(9,5)/20:4(5Z,8Z,11Z,14Z)-OH(17))

C48H82NO10P (863.5676042)


   

PC(20:4(5Z,8Z,11Z,14Z)-OH(17)/DiMe(9,5))

PC(20:4(5Z,8Z,11Z,14Z)-OH(17)/DiMe(9,5))

C48H82NO10P (863.5676042)


   

PC(DiMe(9,5)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

PC(DiMe(9,5)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C48H82NO10P (863.5676042)


   

PC(20:4(5Z,8Z,11Z,14Z)-OH(16R)/DiMe(9,5))

PC(20:4(5Z,8Z,11Z,14Z)-OH(16R)/DiMe(9,5))

C48H82NO10P (863.5676042)


   

PC(DiMe(9,5)/20:4(5Z,8Z,11Z,13E)-OH(15S))

PC(DiMe(9,5)/20:4(5Z,8Z,11Z,13E)-OH(15S))

C48H82NO10P (863.5676042)


   

PC(20:4(5Z,8Z,11Z,13E)-OH(15S)/DiMe(9,5))

PC(20:4(5Z,8Z,11Z,13E)-OH(15S)/DiMe(9,5))

C48H82NO10P (863.5676042)


   

PC(DiMe(9,5)/20:4(5Z,8Z,10E,14Z)-OH(12S))

PC(DiMe(9,5)/20:4(5Z,8Z,10E,14Z)-OH(12S))

C48H82NO10P (863.5676042)


   

PC(20:4(5Z,8Z,10E,14Z)-OH(12S)/DiMe(9,5))

PC(20:4(5Z,8Z,10E,14Z)-OH(12S)/DiMe(9,5))

C48H82NO10P (863.5676042)


   

PC(DiMe(9,5)/20:4(5E,8Z,12Z,14Z)-OH(11R))

PC(DiMe(9,5)/20:4(5E,8Z,12Z,14Z)-OH(11R))

C48H82NO10P (863.5676042)


   

PC(20:4(5E,8Z,12Z,14Z)-OH(11R)/DiMe(9,5))

PC(20:4(5E,8Z,12Z,14Z)-OH(11R)/DiMe(9,5))

C48H82NO10P (863.5676042)


   

PC(DiMe(9,5)/20:4(5Z,7E,11Z,14Z)-OH(9))

PC(DiMe(9,5)/20:4(5Z,7E,11Z,14Z)-OH(9))

C48H82NO10P (863.5676042)


   

PC(20:4(5Z,7E,11Z,14Z)-OH(9)/DiMe(9,5))

PC(20:4(5Z,7E,11Z,14Z)-OH(9)/DiMe(9,5))

C48H82NO10P (863.5676042)


   

PC(20:4(5Z,8Z,11Z,14Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

PC(20:4(5Z,8Z,11Z,14Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

C48H82NO10P (863.5676042)


   

PC(20:3(8Z,11Z,14Z)-2OH(5,6)/20:4(5Z,8Z,11Z,14Z))

PC(20:3(8Z,11Z,14Z)-2OH(5,6)/20:4(5Z,8Z,11Z,14Z))

C48H82NO10P (863.5676042)


   

PC(18:1(11Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PC(18:1(11Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C48H82NO10P (863.5676042)


   

PC(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:1(11Z))

PC(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:1(11Z))

C48H82NO10P (863.5676042)


   

PC(18:1(11Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PC(18:1(11Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C48H82NO10P (863.5676042)


   

PC(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:1(11Z))

PC(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:1(11Z))

C48H82NO10P (863.5676042)


   

PC(18:1(9Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PC(18:1(9Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C48H82NO10P (863.5676042)


   

PC(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:1(9Z))

PC(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:1(9Z))

C48H82NO10P (863.5676042)


   

PC(18:1(9Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PC(18:1(9Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C48H82NO10P (863.5676042)


   

PC(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:1(9Z))

PC(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:1(9Z))

C48H82NO10P (863.5676042)


   

PC(20:3(5Z,8Z,11Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

PC(20:3(5Z,8Z,11Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

C48H82NO10P (863.5676042)


   

PC(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:3(5Z,8Z,11Z))

PC(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:3(5Z,8Z,11Z))

C48H82NO10P (863.5676042)


   

PC(20:3(5Z,8Z,11Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

PC(20:3(5Z,8Z,11Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

C48H82NO10P (863.5676042)


   

PC(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:3(5Z,8Z,11Z))

PC(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:3(5Z,8Z,11Z))

C48H82NO10P (863.5676042)


   

PC(20:3(5Z,8Z,11Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

PC(20:3(5Z,8Z,11Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

C48H82NO10P (863.5676042)


   

PC(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:3(5Z,8Z,11Z))

PC(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:3(5Z,8Z,11Z))

C48H82NO10P (863.5676042)


   

PC(20:3(8Z,11Z,14Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

PC(20:3(8Z,11Z,14Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

C48H82NO10P (863.5676042)


   

PC(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:3(8Z,11Z,14Z))

PC(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:3(8Z,11Z,14Z))

C48H82NO10P (863.5676042)


   

PC(20:3(8Z,11Z,14Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

PC(20:3(8Z,11Z,14Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

C48H82NO10P (863.5676042)


   

PC(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:3(8Z,11Z,14Z))

PC(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:3(8Z,11Z,14Z))

C48H82NO10P (863.5676042)


   

PC(20:3(8Z,11Z,14Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

PC(20:3(8Z,11Z,14Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

C48H82NO10P (863.5676042)


   

PC(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:3(8Z,11Z,14Z))

PC(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:3(8Z,11Z,14Z))

C48H82NO10P (863.5676042)


   

PC(20:4(8Z,11Z,14Z,17Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

PC(20:4(8Z,11Z,14Z,17Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

C48H82NO10P (863.5676042)


   

PC(20:3(8Z,11Z,14Z)-2OH(5,6)/20:4(8Z,11Z,14Z,17Z))

PC(20:3(8Z,11Z,14Z)-2OH(5,6)/20:4(8Z,11Z,14Z,17Z))

C48H82NO10P (863.5676042)


   

PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:1(12Z)-2OH(9,10))

PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:1(12Z)-2OH(9,10))

C48H82NO10P (863.5676042)


   

PC(18:1(12Z)-2OH(9,10)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

PC(18:1(12Z)-2OH(9,10)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

C48H82NO10P (863.5676042)


   

(10E)-12-[2-(dimethylamino)ethoxymethoxy]-6-[4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy-14-ethyl-7,13-dihydroxy-4-(5-hydroxy-4-methoxy-4,6-dimethyloxan-2-yl)oxy-10-methoxyimino-3,5,7,9,11,13-hexamethyl-oxacyclotetradecan-2-one

(10E)-12-[2-(dimethylamino)ethoxymethoxy]-6-[4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy-14-ethyl-7,13-dihydroxy-4-(5-hydroxy-4-methoxy-4,6-dimethyloxan-2-yl)oxy-10-methoxyimino-3,5,7,9,11,13-hexamethyl-oxacyclotetradecan-2-one

C43H81N3O14 (863.5718246)


   

2-amino-3-[[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   
   

SHexCer 24:1;2O/15:1;O

SHexCer 24:1;2O/15:1;O

C45H85NO12S (863.579217)


   

SHexCer 18:2;2O/21:0;O

SHexCer 18:2;2O/21:0;O

C45H85NO12S (863.579217)


   

SHexCer 23:0;2O/16:2;O

SHexCer 23:0;2O/16:2;O

C45H85NO12S (863.579217)


   

SHexCer 15:1;2O/24:1;O

SHexCer 15:1;2O/24:1;O

C45H85NO12S (863.579217)


   

SHexCer 13:1;2O/26:1;O

SHexCer 13:1;2O/26:1;O

C45H85NO12S (863.579217)


   

SHexCer 17:2;2O/22:0;O

SHexCer 17:2;2O/22:0;O

C45H85NO12S (863.579217)


   

SHexCer 14:1;2O/25:1;O

SHexCer 14:1;2O/25:1;O

C45H85NO12S (863.579217)


   

SHexCer 21:0;2O/18:2;O

SHexCer 21:0;2O/18:2;O

C45H85NO12S (863.579217)


   

SHexCer 20:1;2O/19:1;O

SHexCer 20:1;2O/19:1;O

C45H85NO12S (863.579217)


   

SHexCer 13:0;2O/26:2;O

SHexCer 13:0;2O/26:2;O

C45H85NO12S (863.579217)


   

SHexCer 14:2;2O/25:0;O

SHexCer 14:2;2O/25:0;O

C45H85NO12S (863.579217)


   

SHexCer 23:2;2O/16:0;O

SHexCer 23:2;2O/16:0;O

C45H85NO12S (863.579217)


   

SHexCer 15:2;2O/24:0;O

SHexCer 15:2;2O/24:0;O

C45H85NO12S (863.579217)


   

SHexCer 16:1;2O/23:1;O

SHexCer 16:1;2O/23:1;O

C45H85NO12S (863.579217)


   

SHexCer 25:2;2O/14:0;O

SHexCer 25:2;2O/14:0;O

C45H85NO12S (863.579217)


   

SHexCer 17:0;2O/22:2;O

SHexCer 17:0;2O/22:2;O

C45H85NO12S (863.579217)


   

SHexCer 20:2;2O/19:0;O

SHexCer 20:2;2O/19:0;O

C45H85NO12S (863.579217)


   

SHexCer 26:2;2O/13:0;O

SHexCer 26:2;2O/13:0;O

C45H85NO12S (863.579217)


   

SHexCer 16:2;2O/23:0;O

SHexCer 16:2;2O/23:0;O

C45H85NO12S (863.579217)


   

SHexCer 18:1;2O/21:1;O

SHexCer 18:1;2O/21:1;O

C45H85NO12S (863.579217)


   

SHexCer 22:2;2O/17:0;O

SHexCer 22:2;2O/17:0;O

C45H85NO12S (863.579217)


   

SHexCer 25:1;2O/14:1;O

SHexCer 25:1;2O/14:1;O

C45H85NO12S (863.579217)


   

SHexCer 23:1;2O/16:1;O

SHexCer 23:1;2O/16:1;O

C45H85NO12S (863.579217)


   

SHexCer 19:2;2O/20:0;O

SHexCer 19:2;2O/20:0;O

C45H85NO12S (863.579217)


   

SHexCer 21:2;2O/18:0;O

SHexCer 21:2;2O/18:0;O

C45H85NO12S (863.579217)


   

SHexCer 21:1;2O/18:1;O

SHexCer 21:1;2O/18:1;O

C45H85NO12S (863.579217)


   

SHexCer 19:0;2O/20:2;O

SHexCer 19:0;2O/20:2;O

C45H85NO12S (863.579217)


   

SHexCer 15:0;2O/24:2;O

SHexCer 15:0;2O/24:2;O

C45H85NO12S (863.579217)


   

SHexCer 24:2;2O/15:0;O

SHexCer 24:2;2O/15:0;O

C45H85NO12S (863.579217)


   

SHexCer 17:1;2O/22:1;O

SHexCer 17:1;2O/22:1;O

C45H85NO12S (863.579217)


   

SHexCer 26:1;2O/13:1;O

SHexCer 26:1;2O/13:1;O

C45H85NO12S (863.579217)


   

SHexCer 19:1;2O/20:1;O

SHexCer 19:1;2O/20:1;O

C45H85NO12S (863.579217)


   

SHexCer 13:2;2O/26:0;O

SHexCer 13:2;2O/26:0;O

C45H85NO12S (863.579217)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H82NO7P (863.5828592)


   

[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H82NO7P (863.5828592)


   

2-[4-[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-12-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]ethanesulfonic acid

2-[4-[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-12-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]ethanesulfonic acid

C52H81NO7S (863.5733436)


   
   

[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H82NO7P (863.5828592)


   
   

2-amino-3-[[3-[(Z)-docos-13-enoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(Z)-docos-13-enoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

2-amino-3-[hydroxy-[3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(Z)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(Z)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

2-amino-3-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(Z)-tetracos-13-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(Z)-tetracos-13-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

2-amino-3-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-icosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-icosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

2-amino-3-[[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

2-amino-3-[hydroxy-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

2-amino-3-[[3-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

2-amino-3-[[3-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

2-amino-3-[[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[[(2R)-2-[(E)-docos-13-enoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2-[(E)-docos-13-enoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[[(2R)-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-2-[(E)-icos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-2-[(E)-icos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[[(2R)-3-[(E)-docos-13-enoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-[(E)-docos-13-enoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[[3-[(14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoyl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[3-[(14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoyl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[[(2R)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(E)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(E)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[[(2R)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-icosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-icosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[[3-[(17E,20E,23E)-hexacosa-17,20,23-trienoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[3-[(17E,20E,23E)-hexacosa-17,20,23-trienoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[[(2R)-3-[(13E,16E)-docosa-13,16-dienoyl]oxy-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-[(13E,16E)-docosa-13,16-dienoyl]oxy-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[[(2R)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-[(E)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-[(E)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[[(2R)-2-[(13E,16E)-docosa-13,16-dienoyl]oxy-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2-[(13E,16E)-docosa-13,16-dienoyl]oxy-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[hydroxy-[(2S)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[hydroxy-[(2S)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[hydroxy-[(2S)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[hydroxy-[(2S)-3-[(9E,12E)-octadeca-9,12-dienoyl]oxy-2-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-3-[(9E,12E)-octadeca-9,12-dienoyl]oxy-2-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[[3-[(E)-hexacos-11-enoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[3-[(E)-hexacos-11-enoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[[(2R)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-icosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-icosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[hydroxy-[(2S)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[[(2R)-3-[(13E,16E)-docosa-13,16-dienoyl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-[(13E,16E)-docosa-13,16-dienoyl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[hydroxy-[(2S)-3-[(9E,11E)-octadeca-9,11-dienoyl]oxy-2-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-3-[(9E,11E)-octadeca-9,11-dienoyl]oxy-2-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[[(2R)-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-2-[(5E,8E)-icosa-5,8-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-2-[(5E,8E)-icosa-5,8-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[[(2R)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-[(E)-icos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-[(E)-icos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[[(2R)-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-2-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-2-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[[3-[(11E,14E)-hexacosa-11,14-dienoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[3-[(11E,14E)-hexacosa-11,14-dienoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[[(2R)-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-2-[(E)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-2-[(E)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[[(2R)-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-3-[(5E,8E)-icosa-5,8-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-3-[(5E,8E)-icosa-5,8-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[hydroxy-[(2S)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[hydroxy-[(2S)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[[(2R)-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[[(2R)-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(E)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(E)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[[(2R)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(E)-icos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(E)-icos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[[(2R)-2-[(13E,16E)-docosa-13,16-dienoyl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2-[(13E,16E)-docosa-13,16-dienoyl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

(2S)-2-amino-3-[[(2R)-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(E)-icos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(E)-icos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H82NO10P (863.5676042)


   

1-stearoyl-2-oleoyl-sn-glycero-3-phospho-1D-myo-inositol(1-)

1-stearoyl-2-oleoyl-sn-glycero-3-phospho-1D-myo-inositol(1-)

C45H84O13P (863.5649244)


A 1-octadecanoyl-2-acyl-sn-glycero-3-phospho-1D-myo-inositol(1-) in which the 2-acyl group is specified as oleoyl.

   

phosphatidylinositol 36:1(1-)

phosphatidylinositol 36:1(1-)

C45H84O13P (863.5649244)


A 1-phosphatidyl-1D-myo-inositol(1-) in which the acyl groups at C-1 and C-2 contain 36 carbons in total and 1 double bond.

   

ST(39:2)

ST(t16:0_23:2)

C45H85NO12S (863.579217)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved