Exact Mass: 863.1727

Exact Mass Matches: 863.1727

Found 19 metabolites which its exact mass value is equals to given mass value 863.1727, within given mass tolerance error 4.0E-5 dalton. Try search metabolite list with more accurate mass tolerance error 8.0E-6 dalton.

trans-2-Hexenoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-{[({[(3-{[2-({2-[(2E)-hex-2-enoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}-3-hydroxy-2,2-dimethylpropoxy)(hydroxy)phosphoryl]oxy}(hydroxy)phosphoryl)oxy]methyl}-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C27H44N7O17P3S (863.1727)


trans-Hexenoyl-CoA is an intermediate in fatty acid metabolism. Beta-oxidation occurs in both mitochondria and peroxisomes. Mitochondria catalyze the beta-oxidation of the bulk of short-, medium-, and long-chain fatty acids derived from diet, and this pathway constitutes the major process by which fatty acids are oxidized to generate energy. Peroxisomes are involved in the beta-oxidation chain shortening of long-chain and very-long-chain fatty acyl-coenzyme (CoAs), long-chain dicarboxylyl-CoAs, the CoA esters of eicosanoids, 2-methyl-branched fatty acyl-CoAs, and the CoA esters of the bile acid intermediates di- and trihydroxycoprostanoic acids, and in the process they generate H2O2. Long-chain and very-long-chain fatty acids (VLCFAs) are also metabolized by the cytochrome P450 CYP4A omega-oxidation system to dicarboxylic acids that serve as substrates for peroxisomal beta-oxidation. The peroxisomal beta-oxidation system consists of (a) a classical peroxisome proliferator-inducible pathway capable of catalyzing straight-chain acyl-CoAs by fatty acyl-CoA oxidase, L-bifunctional protein, and thiolase, and (b) a second noninducible pathway catalyzing the oxidation of 2-methyl-branched fatty acyl-CoAs by branched-chain acyl-CoA oxidase (pristanoyl-CoA oxidase/trihydroxycoprostanoyl-CoA oxidase), D-bifunctional protein, and sterol carrier protein (SCP)x. trans-Hexenoyl-CoA is the substrate of the enzymes enoyl-coenzyme A reductase, acyl-CoA oxidase [EC 1.3.99.2-1.3.3.6], acyl-CoA dehydrogenase, long-chain-acyl-CoA dehydrogenase [EC 1.3.99.3-1.3.99.13], and Oxidoreductases [EC 1.3.99.-]; trans-Hexenoyl-CoA is an intermediate in fatty acid elongation in mitochondria, being the substrate of the enzymes enoyl-CoA hydratase and long-chain-enoyl-CoA hydratase [EC 4.2.1.17-4.2.1.74]. (PMID: 11375435). trans-Hexenoyl-CoA is an intermediate in fatty acid metabolism. beta-oxidation occurs in both mitochondria and peroxisomes. mitochondria catalyze the beta-oxidation of the bulk of short-, medium-, and long-chain fatty acids derived from diet, and this pathway constitutes the major process by which fatty acids are oxidized to generate energy. Peroxisomes are involved in the beta-oxidation chain shortening of long-chain and very-long-chain fatty acyl-coenzyme (CoAs), long-chain dicarboxylyl-CoAs, the CoA esters of eicosanoids, 2-methyl-branched fatty acyl-CoAs, and the CoA esters of the bile acid intermediates di- and trihydroxycoprostanoic acids, and in the process they generate H2O2. Long-chain and very-long-chain fatty acids (VLCFAs) are also metabolized by the cytochrome P450 CYP4A omega-oxidation system to dicarboxylic acids that serve as substrates for peroxisomal beta-oxidation. The peroxisomal beta-oxidation system consists of (a) a classical peroxisome proliferator-inducible pathway capable of catalyzing straight-chain acyl-CoAs by fatty acyl-CoA oxidase, L-bifunctional protein, and thiolase, and (b) a second noninducible pathway catalyzing the oxidation of 2-methyl-branched fatty acyl-CoAs by branched-chain acyl-CoA oxidase (pristanoyl-CoA oxidase/trihydroxycoprostanoyl-CoA oxidase), D-bifunctional protein, and sterol carrier protein (SCP)x.

   

4-methylpent-2-enoyl-coenzyme A

Isocaprenoyl-CoA; (E)-2-Isocaprenoyl-CoA; 4-Methylpent-2-enoyl-CoA

C27H44N7O17P3S (863.1727)


   

trans-3-Hexenoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-{[({[(3-{[2-({2-[(3E)-hex-3-enoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}-3-hydroxy-2,2-dimethylpropoxy)(hydroxy)phosphoryl]oxy}(hydroxy)phosphoryl)oxy]methyl}-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C27H44N7O17P3S (863.1727)


In the mitochondria, the enzyme 2,4-dienoyl-CoA reductase (NADPH) [EC:1.3.1.34] catalyzes the production of this metabolite from trans,trans-2,4-hexadienoyl-CoA. (PMID:15629123) [HMDB] In the mitochondria, the enzyme 2,4-dienoyl-CoA reductase (NADPH) [EC:1.3.1.34] catalyzes the production of this metabolite from trans,trans-2,4-hexadienoyl-CoA. (PMID:15629123).

   

4-Hexenoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-N-(2-{[2-(hex-4-enoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)-2-hydroxy-3,3-dimethylbutanimidic acid

C27H44N7O17P3S (863.1727)


4-hexenoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a hex-4-enoic acid thioester of coenzyme A. 4-hexenoyl-coa is an acyl-CoA with 6 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 4-hexenoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 4-hexenoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 4-Hexenoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 4-Hexenoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 4-Hexenoyl-CoA into 4-Hexenoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 4-Hexenoylcarnitine is converted back to 4-Hexenoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 4-Hexenoyl-CoA occurs in four steps. First, since 4-Hexenoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 4-Hexenoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol group to a ketone and NADH is produced from NAD+. Finally, Thiolase cleaves between the alpha carbon and k...

   

(3E)-Hexenoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-N-(2-{[2-(hex-3-enoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)-2-hydroxy-3,3-dimethylbutanimidic acid

C27H44N7O17P3S (863.1727)


(3e)-hexenoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (3E)-hex-3-enoic acid thioester of coenzyme A. (3e)-hexenoyl-coa is an acyl-CoA with 5 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (3e)-hexenoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (3e)-hexenoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (3E)-Hexenoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (3E)-Hexenoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (3E)-Hexenoyl-CoA into (3E)-Hexenoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (3E)-Hexenoylcarnitine is converted back to (3E)-Hexenoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (3E)-Hexenoyl-CoA occurs in four steps. First, since (3E)-Hexenoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (3E)-Hexenoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol group to a ketone and NADH is produced from NAD+. Finally, Thi...

   

trans-3-Hexenoyl-CoA

trans-3-Hexenoyl-CoA

C27H44N7O17P3S (863.1727)


A trans-3-enoyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of trans-3-hexenoic acid.

   

CoA 6:1

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-{[({[(3-{[2-({2-[(3E)-hex-3-enoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}-3-hydroxy-2,2-dimethylpropoxy)(hydroxy)phosphoryl]oxy}(hydroxy)phosphoryl)oxy]methyl}-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C27H44N7O17P3S (863.1727)


   

3trans-hexenoyl-coenzyme A

3trans-hexenoyl-coenzyme A

C27H44N7O17P3S (863.1727)


   

(Z)-hex-3-enoyl-CoA

(Z)-hex-3-enoyl-CoA

C27H44N7O17P3S (863.1727)


A fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (Z)-hex-3-enoic acid.

   
   
   

S-[2-[3-[[4-[[[5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (E)-hex-3-enethioate

S-[2-[3-[[4-[[[5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (E)-hex-3-enethioate

C27H44N7O17P3S (863.1727)


   

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (E)-2-methylpent-2-enethioate

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (E)-2-methylpent-2-enethioate

C27H44N7O17P3S (863.1727)


   

trans-hex-4-enoyl-coenzyme A

trans-hex-4-enoyl-coenzyme A

C27H44N7O17P3S (863.1727)


   

S-[2-[3-[[4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 2-cyclobutylethanethioate

S-[2-[3-[[4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 2-cyclobutylethanethioate

C27H44N7O17P3S (863.1727)


   

trans-hex-2-enoyl-CoA

trans-hex-2-enoyl-CoA

C27H44N7O17P3S (863.1727)


An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of trans-hex-2-enoic acid.

   

4-methylpent-2-enoyl-CoA

4-methylpent-2-enoyl-CoA

C27H44N7O17P3S (863.1727)


An alk-2-enoyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of 4-methylpent-2-enoic acid.