Exact Mass: 861.5813

Exact Mass Matches: 861.5813

Found 124 metabolites which its exact mass value is equals to given mass value 861.5813, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

PE(20:0/6 keto-PGF1alpha)

(2-aminoethoxy)[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-(icosanoyloxy)propoxy]phosphinic acid

C45H84NO12P (861.5731)


PE(20:0/6 keto-PGF1alpha) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:0/6 keto-PGF1alpha), in particular, consists of one chain of one eicosanoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(6 keto-PGF1alpha/20:0)

(2-aminoethoxy)[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-(icosanoyloxy)propoxy]phosphinic acid

C45H84NO12P (861.5731)


PE(6 keto-PGF1alpha/20:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(6 keto-PGF1alpha/20:0), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of eicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:0/TXB2)

(2-aminoethoxy)[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-(icosanoyloxy)propoxy]phosphinic acid

C45H84NO12P (861.5731)


PE(20:0/TXB2) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:0/TXB2), in particular, consists of one chain of one eicosanoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(TXB2/20:0)

(2-aminoethoxy)[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-(icosanoyloxy)propoxy]phosphinic acid

C45H84NO12P (861.5731)


PE(TXB2/20:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(TXB2/20:0), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of eicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:1(13Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

(2-aminoethoxy)[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}propoxy]phosphinic acid

C49H84NO9P (861.5883)


PE(22:1(13Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:1(13Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one 13Z-docosenoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:1(13Z))

(2-aminoethoxy)[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}propoxy]phosphinic acid

C49H84NO9P (861.5883)


PE(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:1(13Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:1(13Z)), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of 13Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:1(13Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

(2-aminoethoxy)[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}propoxy]phosphinic acid

C49H84NO9P (861.5883)


PE(22:1(13Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:1(13Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one 13Z-docosenoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:1(13Z))

(2-aminoethoxy)[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}propoxy]phosphinic acid

C49H84NO9P (861.5883)


PE(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:1(13Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:1(13Z)), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of 13Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:1(13Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

(2-aminoethoxy)[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}propoxy]phosphinic acid

C49H84NO9P (861.5883)


PE(22:1(13Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:1(13Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one 13Z-docosenoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:1(13Z))

(2-aminoethoxy)[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}propoxy]phosphinic acid

C49H84NO9P (861.5883)


PE(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:1(13Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:1(13Z)), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of 13Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:1(13Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

(2-aminoethoxy)[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}propoxy]phosphinic acid

C49H84NO9P (861.5883)


PE(22:1(13Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:1(13Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one 13Z-docosenoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:1(13Z))

(2-aminoethoxy)[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}propoxy]phosphinic acid

C49H84NO9P (861.5883)


PE(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:1(13Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:1(13Z)), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of 13Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:1(13Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

(2-aminoethoxy)[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphinic acid

C49H84NO9P (861.5883)


PE(22:1(13Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:1(13Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one 13Z-docosenoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:1(13Z))

(2-aminoethoxy)[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphinic acid

C49H84NO9P (861.5883)


PE(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:1(13Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:1(13Z)), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of 13Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PC(17:0/6 keto-PGF1alpha)

(2-{[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-(heptadecanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C45H84NO12P (861.5731)


PC(17:0/6 keto-PGF1alpha) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(17:0/6 keto-PGF1alpha), in particular, consists of one chain of one heptadecanoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(6 keto-PGF1alpha/17:0)

(2-{[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-(heptadecanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C45H84NO12P (861.5731)


PC(6 keto-PGF1alpha/17:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(6 keto-PGF1alpha/17:0), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of heptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(17:0/TXB2)

(2-{[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-(heptadecanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C45H84NO12P (861.5731)


PC(17:0/TXB2) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(17:0/TXB2), in particular, consists of one chain of one heptadecanoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(TXB2/17:0)

(2-{[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-(heptadecanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C45H84NO12P (861.5731)


PC(TXB2/17:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(TXB2/17:0), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of heptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

Viridamide A

Viridamide A

C46H79N5O10 (861.5827)


A natural product found in Oscillatoria nigroviridis.

   

Am-Hex-PE O-36:3

N-(1-deoxyfructosyl)-1-(1Z-hexadecenyl)-2-(9Z,12Z-octadecadienoyl)-glycero-3-phosphoethanolamine

C45H84NO12P (861.5731)


   

PE(20:0/6 keto-PGF1alpha)

PE(20:0/6 keto-PGF1alpha)

C45H84NO12P (861.5731)


   

PE(6 keto-PGF1alpha/20:0)

PE(6 keto-PGF1alpha/20:0)

C45H84NO12P (861.5731)


   

PC(17:0/6 keto-PGF1alpha)

PC(17:0/6 keto-PGF1alpha)

C45H84NO12P (861.5731)


   

PC(6 keto-PGF1alpha/17:0)

PC(6 keto-PGF1alpha/17:0)

C45H84NO12P (861.5731)


   
   
   
   
   

PE(22:1(13Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

PE(22:1(13Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

C49H84NO9P (861.5883)


   

PE(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:1(13Z))

PE(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:1(13Z))

C49H84NO9P (861.5883)


   

PE(22:1(13Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

PE(22:1(13Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

C49H84NO9P (861.5883)


   

PE(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:1(13Z))

PE(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:1(13Z))

C49H84NO9P (861.5883)


   

PE(22:1(13Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

PE(22:1(13Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

C49H84NO9P (861.5883)


   

PE(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:1(13Z))

PE(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:1(13Z))

C49H84NO9P (861.5883)


   

PE(22:1(13Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

PE(22:1(13Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

C49H84NO9P (861.5883)


   

PE(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:1(13Z))

PE(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:1(13Z))

C49H84NO9P (861.5883)


   

PE(22:1(13Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

PE(22:1(13Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

C49H84NO9P (861.5883)


   

PE(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:1(13Z))

PE(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:1(13Z))

C49H84NO9P (861.5883)


   
   

PI-Cer 16:2;2O/23:1;O

PI-Cer 16:2;2O/23:1;O

C45H84NO12P (861.5731)


   

PI-Cer 26:2;2O/13:1;O

PI-Cer 26:2;2O/13:1;O

C45H84NO12P (861.5731)


   

PI-Cer 19:1;2O/20:2;O

PI-Cer 19:1;2O/20:2;O

C45H84NO12P (861.5731)


   

PI-Cer 17:3;2O/22:0;O

PI-Cer 17:3;2O/22:0;O

C45H84NO12P (861.5731)


   

PI-Cer 17:2;2O/22:1;O

PI-Cer 17:2;2O/22:1;O

C45H84NO12P (861.5731)


   

PI-Cer 24:2;2O/15:1;O

PI-Cer 24:2;2O/15:1;O

C45H84NO12P (861.5731)


   

PI-Cer 21:2;2O/18:1;O

PI-Cer 21:2;2O/18:1;O

C45H84NO12P (861.5731)


   

PI-Cer 15:1;2O/24:2;O

PI-Cer 15:1;2O/24:2;O

C45H84NO12P (861.5731)


   

PI-Cer 17:1;2O/22:2;O

PI-Cer 17:1;2O/22:2;O

C45H84NO12P (861.5731)


   

PI-Cer 18:3;2O/21:0;O

PI-Cer 18:3;2O/21:0;O

C45H84NO12P (861.5731)


   

PI-Cer 14:2;2O/25:1;O

PI-Cer 14:2;2O/25:1;O

C45H84NO12P (861.5731)


   

PI-Cer 21:3;2O/18:0;O

PI-Cer 21:3;2O/18:0;O

C45H84NO12P (861.5731)


   

PI-Cer 21:1;2O/18:2;O

PI-Cer 21:1;2O/18:2;O

C45H84NO12P (861.5731)


   

PI-Cer 25:3;2O/14:0;O

PI-Cer 25:3;2O/14:0;O

C45H84NO12P (861.5731)


   

PI-Cer 15:3;2O/24:0;O

PI-Cer 15:3;2O/24:0;O

C45H84NO12P (861.5731)


   

PI-Cer 23:2;2O/16:1;O

PI-Cer 23:2;2O/16:1;O

C45H84NO12P (861.5731)


   

PI-Cer 13:2;2O/26:1;O

PI-Cer 13:2;2O/26:1;O

C45H84NO12P (861.5731)


   

PI-Cer 23:3;2O/16:0;O

PI-Cer 23:3;2O/16:0;O

C45H84NO12P (861.5731)


   

PI-Cer 22:3;2O/17:0;O

PI-Cer 22:3;2O/17:0;O

C45H84NO12P (861.5731)


   

PI-Cer 14:3;2O/25:0;O

PI-Cer 14:3;2O/25:0;O

C45H84NO12P (861.5731)


   

PI-Cer 19:2;2O/20:1;O

PI-Cer 19:2;2O/20:1;O

C45H84NO12P (861.5731)


   

PI-Cer 15:2;2O/24:1;O

PI-Cer 15:2;2O/24:1;O

C45H84NO12P (861.5731)


   

PI-Cer 20:3;2O/19:0;O

PI-Cer 20:3;2O/19:0;O

C45H84NO12P (861.5731)


   

PI-Cer 24:3;2O/15:0;O

PI-Cer 24:3;2O/15:0;O

C45H84NO12P (861.5731)


   

PI-Cer 16:3;2O/23:0;O

PI-Cer 16:3;2O/23:0;O

C45H84NO12P (861.5731)


   

PI-Cer 20:2;2O/19:1;O

PI-Cer 20:2;2O/19:1;O

C45H84NO12P (861.5731)


   

PI-Cer 25:2;2O/14:1;O

PI-Cer 25:2;2O/14:1;O

C45H84NO12P (861.5731)


   

PI-Cer 26:3;2O/13:0;O

PI-Cer 26:3;2O/13:0;O

C45H84NO12P (861.5731)


   

PI-Cer 13:1;2O/26:2;O

PI-Cer 13:1;2O/26:2;O

C45H84NO12P (861.5731)


   

PI-Cer 19:3;2O/20:0;O

PI-Cer 19:3;2O/20:0;O

C45H84NO12P (861.5731)


   

PI-Cer 23:1;2O/16:2;O

PI-Cer 23:1;2O/16:2;O

C45H84NO12P (861.5731)


   

PI-Cer 18:2;2O/21:1;O

PI-Cer 18:2;2O/21:1;O

C45H84NO12P (861.5731)


   

2-amino-3-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H84NO9P (861.5883)


   

2-amino-3-[[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-[(Z)-henicos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-[(Z)-henicos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H84NO9P (861.5883)


   

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H84NO9P (861.5883)


   

2-amino-3-[hydroxy-[2-[(Z)-nonadec-9-enoyl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(Z)-nonadec-9-enoyl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propoxy]phosphoryl]oxypropanoic acid

C49H84NO9P (861.5883)


   

2-amino-3-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H84NO9P (861.5883)


   

2-amino-3-[hydroxy-[3-[(9Z,12Z)-nonadeca-9,12-dienoxy]-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(9Z,12Z)-nonadeca-9,12-dienoxy]-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C49H84NO9P (861.5883)


   

2-amino-3-[[3-heptadecoxy-2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-heptadecoxy-2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H84NO9P (861.5883)


   

2-amino-3-[[3-[(Z)-heptadec-9-enoxy]-2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(Z)-heptadec-9-enoxy]-2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H84NO9P (861.5883)


   

2-amino-3-[hydroxy-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]phosphoryl]oxypropanoic acid

C49H84NO9P (861.5883)


   

2-amino-3-[[2-[(Z)-heptadec-9-enoyl]oxy-3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(Z)-heptadec-9-enoyl]oxy-3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H84NO9P (861.5883)


   

2-amino-3-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-henicos-11-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-henicos-11-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H84NO9P (861.5883)


   

2-amino-3-[[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H84NO9P (861.5883)


   

2-amino-3-[hydroxy-[3-[(Z)-nonadec-9-enoxy]-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(Z)-nonadec-9-enoxy]-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C49H84NO9P (861.5883)


   

2-amino-3-[[2-heptadecanoyloxy-3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-heptadecanoyloxy-3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H84NO9P (861.5883)


   
   

DGTS 42:11;O2

DGTS 42:11;O2

C52H79NO9 (861.5755)


   
   
   
   
   
   
   
   

Hex2Cer 14:2;O2/19:0;O

Hex2Cer 14:2;O2/19:0;O

C45H83NO14 (861.5813)


   

Hex2Cer 15:1;O2/18:1;O

Hex2Cer 15:1;O2/18:1;O

C45H83NO14 (861.5813)


   

Hex2Cer 15:2;O2/18:0;O

Hex2Cer 15:2;O2/18:0;O

C45H83NO14 (861.5813)


   

Hex2Cer 16:2;O2/17:0;O

Hex2Cer 16:2;O2/17:0;O

C45H83NO14 (861.5813)


   

Hex2Cer 17:2;O2/16:0;O

Hex2Cer 17:2;O2/16:0;O

C45H83NO14 (861.5813)


   

Hex2Cer 18:2;O2/15:0;O

Hex2Cer 18:2;O2/15:0;O

C45H83NO14 (861.5813)


   

Hex2Cer 19:2;O2/14:0;O

Hex2Cer 19:2;O2/14:0;O

C45H83NO14 (861.5813)


   

Hex2Cer 20:2;O2/13:0;O

Hex2Cer 20:2;O2/13:0;O

C45H83NO14 (861.5813)


   

Hex2Cer 21:2;O2/12:0;O

Hex2Cer 21:2;O2/12:0;O

C45H83NO14 (861.5813)


   

Hex2Cer 22:2;O2/11:0;O

Hex2Cer 22:2;O2/11:0;O

C45H83NO14 (861.5813)


   

Hex2Cer 33:2;O2;O

Hex2Cer 33:2;O2;O

C45H83NO14 (861.5813)


   

LacCer 14:2;O2/19:0;O

LacCer 14:2;O2/19:0;O

C45H83NO14 (861.5813)


   

LacCer 15:1;O2/18:1;O

LacCer 15:1;O2/18:1;O

C45H83NO14 (861.5813)


   

LacCer 15:2;O2/18:0;O

LacCer 15:2;O2/18:0;O

C45H83NO14 (861.5813)


   

LacCer 16:2;O2/17:0;O

LacCer 16:2;O2/17:0;O

C45H83NO14 (861.5813)


   

LacCer 17:2;O2/16:0;O

LacCer 17:2;O2/16:0;O

C45H83NO14 (861.5813)


   

LacCer 18:2;O2/15:0;O

LacCer 18:2;O2/15:0;O

C45H83NO14 (861.5813)


   

LacCer 19:2;O2/14:0;O

LacCer 19:2;O2/14:0;O

C45H83NO14 (861.5813)


   

LacCer 20:2;O2/13:0;O

LacCer 20:2;O2/13:0;O

C45H83NO14 (861.5813)


   

LacCer 21:2;O2/12:0;O

LacCer 21:2;O2/12:0;O

C45H83NO14 (861.5813)


   

LacCer 22:2;O2/11:0;O

LacCer 22:2;O2/11:0;O

C45H83NO14 (861.5813)


   

LacCer 33:2;O2;O

LacCer 33:2;O2;O

C45H83NO14 (861.5813)


   

IPC 15:2;O2/24:1;O

IPC 15:2;O2/24:1;O

C45H84NO12P (861.5731)


   

IPC 17:2;O2/22:1;O

IPC 17:2;O2/22:1;O

C45H84NO12P (861.5731)


   

IPC 19:2;O2/20:1;O

IPC 19:2;O2/20:1;O

C45H84NO12P (861.5731)


   

IPC 21:2;O2/18:1;O

IPC 21:2;O2/18:1;O

C45H84NO12P (861.5731)


   
   

2-(5-methoxy-n-methyldec-9-ynamido)-n-{1-[(1-{[1-({1-[2-(methoxycarbonyl)pyrrolidin-1-yl]-3-methyl-1-oxopentan-2-yl}oxy)-3-methyl-1-oxobutan-2-yl](methyl)carbamoyl}-2-methylpropyl)-c-hydroxycarbonimidoyl]-2-methylpropyl}-3-methylpentanimidic acid

2-(5-methoxy-n-methyldec-9-ynamido)-n-{1-[(1-{[1-({1-[2-(methoxycarbonyl)pyrrolidin-1-yl]-3-methyl-1-oxopentan-2-yl}oxy)-3-methyl-1-oxobutan-2-yl](methyl)carbamoyl}-2-methylpropyl)-c-hydroxycarbonimidoyl]-2-methylpropyl}-3-methylpentanimidic acid

C46H79N5O10 (861.5827)


   

(2s,3s)-2-(5-methoxy-n-methyldec-9-ynamido)-n-[(1s)-1-{[(1s)-1-{[(2s)-1-{[(2s,3s)-1-[(2s)-2-(methoxycarbonyl)pyrrolidin-1-yl]-3-methyl-1-oxopentan-2-yl]oxy}-3-methyl-1-oxobutan-2-yl](methyl)carbamoyl}-2-methylpropyl]-c-hydroxycarbonimidoyl}-2-methylpropyl]-3-methylpentanimidic acid

(2s,3s)-2-(5-methoxy-n-methyldec-9-ynamido)-n-[(1s)-1-{[(1s)-1-{[(2s)-1-{[(2s,3s)-1-[(2s)-2-(methoxycarbonyl)pyrrolidin-1-yl]-3-methyl-1-oxopentan-2-yl]oxy}-3-methyl-1-oxobutan-2-yl](methyl)carbamoyl}-2-methylpropyl]-c-hydroxycarbonimidoyl}-2-methylpropyl]-3-methylpentanimidic acid

C46H79N5O10 (861.5827)


   

(2s,3s)-2-[(5s)-5-methoxy-n-methyldec-9-ynamido]-n-[(1s)-1-{[(1s)-1-{[(2s)-1-{[(2s,3s)-1-[(2s)-2-(methoxycarbonyl)pyrrolidin-1-yl]-3-methyl-1-oxopentan-2-yl]oxy}-3-methyl-1-oxobutan-2-yl](methyl)carbamoyl}-2-methylpropyl]-c-hydroxycarbonimidoyl}-2-methylpropyl]-3-methylpentanimidic acid

(2s,3s)-2-[(5s)-5-methoxy-n-methyldec-9-ynamido]-n-[(1s)-1-{[(1s)-1-{[(2s)-1-{[(2s,3s)-1-[(2s)-2-(methoxycarbonyl)pyrrolidin-1-yl]-3-methyl-1-oxopentan-2-yl]oxy}-3-methyl-1-oxobutan-2-yl](methyl)carbamoyl}-2-methylpropyl]-c-hydroxycarbonimidoyl}-2-methylpropyl]-3-methylpentanimidic acid

C46H79N5O10 (861.5827)