Exact Mass: 851.6768
Exact Mass Matches: 851.6768
Found 124 metabolites which its exact mass value is equals to given mass value 851.6768
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
PC(O-22:0/20:4(8Z,11Z,14Z,17Z))
PC(O-22:0/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(O-22:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of Behenyl alcohol at the C-1 position and one chain of eicosatetraenoic acid at the C-2 position. The Behenyl alcohol moiety is derived from Rice bran, while the eicosatetraenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(o-22:0/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(o-22:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of Behenyl alcohol at the C-1 position and one chain of eicosatetraenoic acid at the C-2 position. The Behenyl alcohol moiety is derived from Rice bran, while the eicosatetraenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PC(O-22:2(13Z,16Z)/20:2(11Z,14Z))
PC(O-22:2(13Z,16Z)/20:2(11Z,14Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(O-22:2(13Z,16Z)/20:2(11Z,14Z)), in particular, consists of one chain of Docosadienyl alcohol at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The Docosadienyl alcohol moiety is derived from animal fat, while the eicosadienoic acid moiety is derived from fish oils and liver. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(o-22:2(13Z,16Z)/20:2(11Z,14Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(o-22:2(13Z,16Z)/20:2(11Z,14Z)), in particular, consists of one chain of Docosadienyl alcohol at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The Docosadienyl alcohol moiety is derived from animal fat, while the eicosadienoic acid moiety is derived from fish oils and liver. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PC(O-20:0/22:4(7Z,10Z,13Z,16Z))
2-(2-Hydroxytetracosanoylamino)-octadecane-1,3,4-triol tetraacetate
[2-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoyl]oxy-3-tetradecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]propan-2-yl] nonadecanoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoxy]propan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] (16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-henicosoxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(15Z,18Z)-hexacosa-15,18-dienoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tricosoxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propan-2-yl] (Z)-nonadec-9-enoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(17Z,20Z)-octacosa-17,20-dienoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptacosoxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentacosoxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecoxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propan-2-yl] (Z)-henicos-11-enoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propan-2-yl] henicosanoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (17Z,20Z)-octacosa-17,20-dienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoxy]propan-2-yl] (Z)-heptadec-9-enoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] (14Z,17Z,20Z)-octacosa-14,17,20-trienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoxy]propan-2-yl] heptadecanoate
[2-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxy-3-[(Z)-hexadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(Z)-hexacos-15-enoyl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(Z)-icos-11-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]-2-[(Z)-hexadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-docosoxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[(15Z,18Z)-hexacosa-15,18-dienoxy]-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[(Z)-hexacos-15-enoxy]-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(Z)-octadec-9-enoyl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[(11Z,14Z)-henicosa-11,14-dienoxy]-2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-octadecanoyloxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-hexacosoxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[(Z)-docos-13-enoxy]-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[(Z)-octadec-9-enoxy]-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoxy]-2-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]-2-hexadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-hexacosanoyloxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-[(Z)-tetracos-13-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-tetracosoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-icosoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoxy]-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoyl]oxy-3-[(Z)-tetradec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] pentacosanoate
[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]-2-tetracosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[(9Z,12Z)-octadeca-9,12-dienoxy]-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-[(Z)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(Z)-docos-13-enoyl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-hexadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]-2-[(Z)-tetracos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-octadecoxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]propan-2-yl] tricosanoate
[2-docosanoyloxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] heptacosanoate
1-icosyl-2-[(7Z,10Z,13Z,16Z)-docosatetraenoyl]-sn-glycero-3-phosphocholine
A phosphatidylcholine O-42:4 in which the alkyl and acyl group specified at positions 1 and 2 are icosyl and (7Z,10Z,13Z,16Z)-docosatetraenoyl respectively.
phosphatidylcholine O-42:4
An alkyl,acyl-sn-glycero-3-phosphocholine in which the alkyl or acyl groups at positions 1 and 2 contain a total of 42 carbons and 4 double bonds.
MePC(41:4)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
Hex1Cer(44:3)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved