Exact Mass: 850.5839676

Exact Mass Matches: 850.5839676

Found 119 metabolites which its exact mass value is equals to given mass value 850.5839676, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

PG(a-21:0/18:1(12Z)-2OH(9,10))

[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(18-methylicosanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C45H87O12P (850.5934831999999)


PG(a-21:0/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-21:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 18-methyleicosanoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:1(12Z)-2OH(9,10)/a-21:0)

[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(18-methylicosanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C45H87O12P (850.5934831999999)


PG(18:1(12Z)-2OH(9,10)/a-21:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:1(12Z)-2OH(9,10)/a-21:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 18-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-21:0/18:1(12Z)-2OH(9,10))

[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(19-methylicosanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C45H87O12P (850.5934831999999)


PG(i-21:0/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-21:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 19-methyleicosanoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:1(12Z)-2OH(9,10)/i-21:0)

[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(19-methylicosanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C45H87O12P (850.5934831999999)


PG(18:1(12Z)-2OH(9,10)/i-21:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:1(12Z)-2OH(9,10)/i-21:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 19-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PI(O-16:0/20:1(11Z))

1-hexadecyl-2-(11Z-eicosenoyl)-glycero-3-phospho-(1-myo-inositol)

C45H87O12P (850.5934831999999)


   

PI(O-18:0/18:1(9Z))

1-octadecyl-2-(9Z-octadecenoyl)-glycero-3-phospho-(1-myo-inositol)

C45H87O12P (850.5934831999999)


   

PI(O-20:0/16:1(9Z))

1-eicosyl-2-(9Z-hexadecenoyl)-glycero-3-phospho-(1-myo-inositol)

C45H87O12P (850.5934831999999)


   

PI(P-16:0/20:0)

1-(1Z-hexadecenyl)-2-eicosanoyl-glycero-3-phospho-(1-myo-inositol)

C45H87O12P (850.5934831999999)


   

PI(P-18:0/18:0)

1-(1Z-octadecenyl)-2-octadecanoyl-glycero-3-phospho-(1-myo-inositol)

C45H87O12P (850.5934831999999)


   

PI(P-20:0/16:0)

1-(1Z-eicosenyl)-2-hexadecanoyl-glycero-3-phospho-(1-myo-inositol)

C45H87O12P (850.5934831999999)


   

SQDG 36:0

(2S)-1,2-distearoyl-3-O-(6-sulfo-a-D-quinovopyranosyl)-glycerol

C45H86O12S (850.5839676)


   

PI O-36:1

1-(1Z-octadecenyl)-2-octadecanoyl-glycero-3-phospho-(1-myo-inositol)

C45H87O12P (850.5934831999999)


   

(11BR, 11BR)-4,4-(OXYDI-2,1-PHENYLENE&

(11BR, 11BR)-4,4-(OXYDI-2,1-PHENYLENE&

C52H84O5P2 (850.5793674)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-decoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-hexacos-15-enoate

[1-decoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-hexacos-15-enoate

C45H87O12P (850.5934831999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetracos-13-enoxy]propan-2-yl] dodecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetracos-13-enoxy]propan-2-yl] dodecanoate

C45H87O12P (850.5934831999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octadecoxypropan-2-yl] (Z)-octadec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octadecoxypropan-2-yl] (Z)-octadec-9-enoate

C45H87O12P (850.5934831999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentadecoxypropan-2-yl] (Z)-henicos-11-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentadecoxypropan-2-yl] (Z)-henicos-11-enoate

C45H87O12P (850.5934831999999)


   

[1-dodecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tetracos-13-enoate

[1-dodecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tetracos-13-enoate

C45H87O12P (850.5934831999999)


   

[1-heptadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-nonadec-9-enoate

[1-heptadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-nonadec-9-enoate

C45H87O12P (850.5934831999999)


   

[1-[(Z)-docos-13-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] tetradecanoate

[1-[(Z)-docos-13-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] tetradecanoate

C45H87O12P (850.5934831999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] henicosanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] henicosanoate

C45H87O12P (850.5934831999999)


   

[1-docosoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tetradec-9-enoate

[1-docosoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tetradec-9-enoate

C45H87O12P (850.5934831999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] octadecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] octadecanoate

C45H87O12P (850.5934831999999)


   

[1-[(Z)-hexadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] icosanoate

[1-[(Z)-hexadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] icosanoate

C45H87O12P (850.5934831999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonadecoxypropan-2-yl] (Z)-heptadec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonadecoxypropan-2-yl] (Z)-heptadec-9-enoate

C45H87O12P (850.5934831999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecoxypropan-2-yl] (Z)-docos-13-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecoxypropan-2-yl] (Z)-docos-13-enoate

C45H87O12P (850.5934831999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] docosanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] docosanoate

C45H87O12P (850.5934831999999)


   

[1-henicosoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-pentadec-9-enoate

[1-henicosoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-pentadec-9-enoate

C45H87O12P (850.5934831999999)


   

[1-hexadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-icos-11-enoate

[1-hexadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-icos-11-enoate

C45H87O12P (850.5934831999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] tricosanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] tricosanoate

C45H87O12P (850.5934831999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tricosoxypropan-2-yl] (Z)-tridec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tricosoxypropan-2-yl] (Z)-tridec-9-enoate

C45H87O12P (850.5934831999999)


   

[1-[(Z)-henicos-11-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] pentadecanoate

[1-[(Z)-henicos-11-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] pentadecanoate

C45H87O12P (850.5934831999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] hexadecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] hexadecanoate

C45H87O12P (850.5934831999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-icosoxypropan-2-yl] (Z)-hexadec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-icosoxypropan-2-yl] (Z)-hexadec-9-enoate

C45H87O12P (850.5934831999999)


   

[1-[(Z)-hexacos-15-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] decanoate

[1-[(Z)-hexacos-15-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] decanoate

C45H87O12P (850.5934831999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] heptadecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] heptadecanoate

C45H87O12P (850.5934831999999)


   

[1-[(Z)-heptadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] nonadecanoate

[1-[(Z)-heptadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] nonadecanoate

C45H87O12P (850.5934831999999)


   

[6-[2,3-Di(octadecanoyloxy)propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2,3-Di(octadecanoyloxy)propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H86O12S (850.5839676)


   

[6-(3-Dodecanoyloxy-2-tetracosanoyloxypropoxy)-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-(3-Dodecanoyloxy-2-tetracosanoyloxypropoxy)-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H86O12S (850.5839676)


   

[3,4,5-Trihydroxy-6-(2-tricosanoyloxy-3-tridecanoyloxypropoxy)oxan-2-yl]methanesulfonic acid

[3,4,5-Trihydroxy-6-(2-tricosanoyloxy-3-tridecanoyloxypropoxy)oxan-2-yl]methanesulfonic acid

C45H86O12S (850.5839676)


   

[6-(2-Docosanoyloxy-3-tetradecanoyloxypropoxy)-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-(2-Docosanoyloxy-3-tetradecanoyloxypropoxy)-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H86O12S (850.5839676)


   

[6-(2-Henicosanoyloxy-3-pentadecanoyloxypropoxy)-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-(2-Henicosanoyloxy-3-pentadecanoyloxypropoxy)-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H86O12S (850.5839676)


   

[6-(3-Hexadecanoyloxy-2-icosanoyloxypropoxy)-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-(3-Hexadecanoyloxy-2-icosanoyloxypropoxy)-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H86O12S (850.5839676)


   

[6-(3-Heptadecanoyloxy-2-nonadecanoyloxypropoxy)-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-(3-Heptadecanoyloxy-2-nonadecanoyloxypropoxy)-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H86O12S (850.5839676)


   

[(2S,3S,6S)-6-[(2S)-3-docosanoyloxy-2-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-docosanoyloxy-2-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H86O12S (850.5839676)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-tricosanoyloxy-2-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-tricosanoyloxy-2-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C45H86O12S (850.5839676)


   

[(2S,3S,6S)-6-[(2S)-2-henicosanoyloxy-3-pentadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-henicosanoyloxy-3-pentadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H86O12S (850.5839676)


   

[(2S,3S,6S)-6-[(2S)-2,3-di(octadecanoyloxy)propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2,3-di(octadecanoyloxy)propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H86O12S (850.5839676)


   

[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-hexacosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-hexacosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H86O12S (850.5839676)


   

[(2S,3S,6S)-6-[(2S)-3-dodecanoyloxy-2-tetracosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-dodecanoyloxy-2-tetracosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H86O12S (850.5839676)


   

[(2S,3S,6S)-6-[(2S)-2-hexadecanoyloxy-3-icosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-hexadecanoyloxy-3-icosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H86O12S (850.5839676)


   

[(2S,3S,6S)-6-[(2S)-2-docosanoyloxy-3-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-docosanoyloxy-3-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H86O12S (850.5839676)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-pentacosanoyloxy-3-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-pentacosanoyloxy-3-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C45H86O12S (850.5839676)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-pentacosanoyloxy-2-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-pentacosanoyloxy-2-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C45H86O12S (850.5839676)


   

[(2S,3S,6S)-6-[(2S)-3-heptadecanoyloxy-2-nonadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-heptadecanoyloxy-2-nonadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H86O12S (850.5839676)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-tricosanoyloxy-3-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-tricosanoyloxy-3-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C45H86O12S (850.5839676)


   

[(2S,3S,6S)-6-[(2S)-3-hexadecanoyloxy-2-icosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-hexadecanoyloxy-2-icosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H86O12S (850.5839676)


   

[(2R,3R,6R)-6-[(2S)-2-decanoyloxy-3-hexacosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2R,3R,6R)-6-[(2S)-2-decanoyloxy-3-hexacosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H86O12S (850.5839676)


   

[(2S,3S,6S)-6-[(2S)-3-henicosanoyloxy-2-pentadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-henicosanoyloxy-2-pentadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H86O12S (850.5839676)


   

[(2S,3S,6S)-6-[(2S)-2-heptadecanoyloxy-3-nonadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-heptadecanoyloxy-3-nonadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H86O12S (850.5839676)


   

[(2S,3S,6S)-6-[(2S)-2-dodecanoyloxy-3-tetracosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-dodecanoyloxy-3-tetracosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H86O12S (850.5839676)


   

1-(1Z-eicosenyl)-2-hexadecanoyl-glycero-3-phospho-(1-myo-inositol)

1-(1Z-eicosenyl)-2-hexadecanoyl-glycero-3-phospho-(1-myo-inositol)

C45H87O12P (850.5934831999999)


   

1-eicosyl-2-(9Z-hexadecenoyl)-glycero-3-phospho-(1-myo-inositol)

1-eicosyl-2-(9Z-hexadecenoyl)-glycero-3-phospho-(1-myo-inositol)

C45H87O12P (850.5934831999999)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

(2s)-1,2-distearoyl-3-o-(6-sulpho-α-d-quino-vopyranosyl)-glycerol

NA

C45H86O12S (850.5839676)


{"Ingredient_id": "HBIN006564","Ingredient_name": "(2s)-1,2-distearoyl-3-o-(6-sulpho-\u03b1-d-quino-vopyranosyl)-glycerol","Alias": "NA","Ingredient_formula": "C45H86O12S","Ingredient_Smile": "CCCCCCCCCCCCCCCCCC(=O)OCC(COC1C(C(C(C(O1)CS(=O)(=O)O)O)O)O)OC(=O)CCCCCCCCCCCCCCCCC","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "6518","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}