Exact Mass: 838.617

Exact Mass Matches: 838.617

Found 225 metabolites which its exact mass value is equals to given mass value 838.617, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

PA(a-25:0/20:3(5Z,8Z,11Z)-O(14R,15S))

[(2R)-3-[(22-methyltetracosanoyl)oxy]-2-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphonic acid

C48H87O9P (838.6087)


PA(a-25:0/20:3(5Z,8Z,11Z)-O(14R,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-25:0/20:3(5Z,8Z,11Z)-O(14R,15S)), in particular, consists of one chain of one 22-methyltetracosanoyl at the C-1 position and one chain of 14,15-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/a-25:0)

[(2R)-2-[(22-methyltetracosanoyl)oxy]-3-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphonic acid

C48H87O9P (838.6087)


PA(20:3(5Z,8Z,11Z)-O(14R,15S)/a-25:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,8Z,11Z)-O(14R,15S)/a-25:0), in particular, consists of one chain of one 14,15-epoxyeicosatrienoyl at the C-1 position and one chain of 22-methyltetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-25:0/20:3(5Z,8Z,14Z)-O(11S,12R))

[(2R)-3-[(22-methyltetracosanoyl)oxy]-2-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propoxy]phosphonic acid

C48H87O9P (838.6087)


PA(a-25:0/20:3(5Z,8Z,14Z)-O(11S,12R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-25:0/20:3(5Z,8Z,14Z)-O(11S,12R)), in particular, consists of one chain of one 22-methyltetracosanoyl at the C-1 position and one chain of 11,12-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/a-25:0)

[(2R)-2-[(22-methyltetracosanoyl)oxy]-3-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propoxy]phosphonic acid

C48H87O9P (838.6087)


PA(20:3(5Z,8Z,14Z)-O(11S,12R)/a-25:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,8Z,14Z)-O(11S,12R)/a-25:0), in particular, consists of one chain of one 11,12-epoxyeicosatrienoyl at the C-1 position and one chain of 22-methyltetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-25:0/20:3(5Z,11Z,14Z)-O(8,9))

[(2R)-3-[(22-methyltetracosanoyl)oxy]-2-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphonic acid

C48H87O9P (838.6087)


PA(a-25:0/20:3(5Z,11Z,14Z)-O(8,9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-25:0/20:3(5Z,11Z,14Z)-O(8,9)), in particular, consists of one chain of one 22-methyltetracosanoyl at the C-1 position and one chain of 8,9--epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,11Z,14Z)-O(8,9)/a-25:0)

[(2R)-2-[(22-methyltetracosanoyl)oxy]-3-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphonic acid

C48H87O9P (838.6087)


PA(20:3(5Z,11Z,14Z)-O(8,9)/a-25:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,11Z,14Z)-O(8,9)/a-25:0), in particular, consists of one chain of one 8,9--epoxyeicosatrienoyl at the C-1 position and one chain of 22-methyltetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-25:0/20:3(8Z,11Z,14Z)-O(5,6))

PA(a-25:0/20:3(8Z,11Z,14Z)-O(5,6))

C48H87O9P (838.6087)


PA(a-25:0/20:3(8Z,11Z,14Z)-O(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-25:0/20:3(8Z,11Z,14Z)-O(5,6)), in particular, consists of one chain of one 22-methyltetracosanoyl at the C-1 position and one chain of 5,6-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-O(5,6)/a-25:0)

[(2R)-2-[(22-methyltetracosanoyl)oxy]-3-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphonic acid

C48H87O9P (838.6087)


PA(20:3(8Z,11Z,14Z)-O(5,6)/a-25:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-O(5,6)/a-25:0), in particular, consists of one chain of one 5,6-epoxyeicosatrienoyl at the C-1 position and one chain of 22-methyltetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-25:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

[(2R)-2-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(22-methyltetracosanoyl)oxy]propoxy]phosphonic acid

C48H87O9P (838.6087)


PA(a-25:0/20:4(5Z,8Z,11Z,14Z)-OH(20)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-25:0/20:4(5Z,8Z,11Z,14Z)-OH(20)), in particular, consists of one chain of one 22-methyltetracosanoyl at the C-1 position and one chain of 20-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/a-25:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(22-methyltetracosanoyl)oxy]propoxy]phosphonic acid

C48H87O9P (838.6087)


PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/a-25:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/a-25:0), in particular, consists of one chain of one 20-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 22-methyltetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-25:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

PA(a-25:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

C48H87O9P (838.6087)


PA(a-25:0/20:4(6E,8Z,11Z,14Z)-OH(5S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-25:0/20:4(6E,8Z,11Z,14Z)-OH(5S)), in particular, consists of one chain of one 22-methyltetracosanoyl at the C-1 position and one chain of 5-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/a-25:0)

[(2R)-3-{[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-2-[(22-methyltetracosanoyl)oxy]propoxy]phosphonic acid

C48H87O9P (838.6087)


PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/a-25:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/a-25:0), in particular, consists of one chain of one 5-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 22-methyltetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-25:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

[(2R)-2-{[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(22-methyltetracosanoyl)oxy]propoxy]phosphonic acid

C48H87O9P (838.6087)


PA(a-25:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-25:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)), in particular, consists of one chain of one 22-methyltetracosanoyl at the C-1 position and one chain of 19-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/a-25:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(22-methyltetracosanoyl)oxy]propoxy]phosphonic acid

C48H87O9P (838.6087)


PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/a-25:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/a-25:0), in particular, consists of one chain of one 19-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 22-methyltetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-25:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(22-methyltetracosanoyl)oxy]propoxy]phosphonic acid

C48H87O9P (838.6087)


PA(a-25:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-25:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)), in particular, consists of one chain of one 22-methyltetracosanoyl at the C-1 position and one chain of 18-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/a-25:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(22-methyltetracosanoyl)oxy]propoxy]phosphonic acid

C48H87O9P (838.6087)


PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/a-25:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/a-25:0), in particular, consists of one chain of one 18-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 22-methyltetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-25:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

[(2R)-2-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(22-methyltetracosanoyl)oxy]propoxy]phosphonic acid

C48H87O9P (838.6087)


PA(a-25:0/20:4(5Z,8Z,11Z,14Z)-OH(17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-25:0/20:4(5Z,8Z,11Z,14Z)-OH(17)), in particular, consists of one chain of one 22-methyltetracosanoyl at the C-1 position and one chain of 17-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/a-25:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(22-methyltetracosanoyl)oxy]propoxy]phosphonic acid

C48H87O9P (838.6087)


PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/a-25:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/a-25:0), in particular, consists of one chain of one 17-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 22-methyltetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-25:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(22-methyltetracosanoyl)oxy]propoxy]phosphonic acid

C48H87O9P (838.6087)


PA(a-25:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-25:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)), in particular, consists of one chain of one 22-methyltetracosanoyl at the C-1 position and one chain of 16-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/a-25:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(22-methyltetracosanoyl)oxy]propoxy]phosphonic acid

C48H87O9P (838.6087)


PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/a-25:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/a-25:0), in particular, consists of one chain of one 16-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 22-methyltetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-25:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

[(2R)-2-{[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-3-[(22-methyltetracosanoyl)oxy]propoxy]phosphonic acid

C48H87O9P (838.6087)


PA(a-25:0/20:4(5Z,8Z,11Z,13E)-OH(15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-25:0/20:4(5Z,8Z,11Z,13E)-OH(15S)), in particular, consists of one chain of one 22-methyltetracosanoyl at the C-1 position and one chain of 15-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/a-25:0)

[(2R)-3-{[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-2-[(22-methyltetracosanoyl)oxy]propoxy]phosphonic acid

C48H87O9P (838.6087)


PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/a-25:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/a-25:0), in particular, consists of one chain of one 15-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 22-methyltetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-25:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

[(2R)-2-{[(5Z,8Z,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-3-[(22-methyltetracosanoyl)oxy]propoxy]phosphonate

C48H87O9P (838.6087)


PA(a-25:0/20:4(5Z,8Z,10E,14Z)-OH(12S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-25:0/20:4(5Z,8Z,10E,14Z)-OH(12S)), in particular, consists of one chain of one 22-methyltetracosanoyl at the C-1 position and one chain of 12-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/a-25:0)

[(2R)-3-{[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-2-[(22-methyltetracosanoyl)oxy]propoxy]phosphonic acid

C48H87O9P (838.6087)


PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/a-25:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/a-25:0), in particular, consists of one chain of one 12-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 22-methyltetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-25:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

[(2R)-2-{[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-3-[(22-methyltetracosanoyl)oxy]propoxy]phosphonic acid

C48H87O9P (838.6087)


PA(a-25:0/20:4(5E,8Z,12Z,14Z)-OH(11R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-25:0/20:4(5E,8Z,12Z,14Z)-OH(11R)), in particular, consists of one chain of one 22-methyltetracosanoyl at the C-1 position and one chain of 11-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/a-25:0)

[(2R)-3-{[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-2-[(22-methyltetracosanoyl)oxy]propoxy]phosphonic acid

C48H87O9P (838.6087)


PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/a-25:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/a-25:0), in particular, consists of one chain of one 11-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 22-methyltetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-25:0/20:4(5Z,7E,11Z,14Z)-OH(9))

[(2R)-2-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-3-[(22-methyltetracosanoyl)oxy]propoxy]phosphonic acid

C48H87O9P (838.6087)


PA(a-25:0/20:4(5Z,7E,11Z,14Z)-OH(9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-25:0/20:4(5Z,7E,11Z,14Z)-OH(9)), in particular, consists of one chain of one 22-methyltetracosanoyl at the C-1 position and one chain of 9-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/a-25:0)

[(2R)-3-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-2-[(22-methyltetracosanoyl)oxy]propoxy]phosphonic acid

C48H87O9P (838.6087)


PA(20:4(5Z,7E,11Z,14Z)-OH(9)/a-25:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,7E,11Z,14Z)-OH(9)/a-25:0), in particular, consists of one chain of one 9-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 22-methyltetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(P-20:0/22:4(7Z,10Z,13Z,16Z))

1-(1Z-eicosenyl)-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-glycero-3-phospho-(1-sn-glycerol)

C48H87O9P (838.6087)


   

PG O-42:5

1-(1Z-eicosenyl)-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-glycero-3-phospho-(1-sn-glycerol)

C48H87O9P (838.6087)


   

PA(a-25:0/20:3(5Z,8Z,11Z)-O(14R,15S))

PA(a-25:0/20:3(5Z,8Z,11Z)-O(14R,15S))

C48H87O9P (838.6087)


   

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/a-25:0)

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/a-25:0)

C48H87O9P (838.6087)


   

PA(a-25:0/20:3(5Z,8Z,14Z)-O(11S,12R))

PA(a-25:0/20:3(5Z,8Z,14Z)-O(11S,12R))

C48H87O9P (838.6087)


   

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/a-25:0)

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/a-25:0)

C48H87O9P (838.6087)


   

PA(a-25:0/20:3(5Z,11Z,14Z)-O(8,9))

PA(a-25:0/20:3(5Z,11Z,14Z)-O(8,9))

C48H87O9P (838.6087)


   

PA(20:3(5Z,11Z,14Z)-O(8,9)/a-25:0)

PA(20:3(5Z,11Z,14Z)-O(8,9)/a-25:0)

C48H87O9P (838.6087)


   

PA(a-25:0/20:3(8Z,11Z,14Z)-O(5,6))

PA(a-25:0/20:3(8Z,11Z,14Z)-O(5,6))

C48H87O9P (838.6087)


   

PA(20:3(8Z,11Z,14Z)-O(5,6)/a-25:0)

PA(20:3(8Z,11Z,14Z)-O(5,6)/a-25:0)

C48H87O9P (838.6087)


   

PA(a-25:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

PA(a-25:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

C48H87O9P (838.6087)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/a-25:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/a-25:0)

C48H87O9P (838.6087)


   

PA(a-25:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

PA(a-25:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

C48H87O9P (838.6087)


   

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/a-25:0)

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/a-25:0)

C48H87O9P (838.6087)


   

PA(a-25:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

PA(a-25:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C48H87O9P (838.6087)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/a-25:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/a-25:0)

C48H87O9P (838.6087)


   

PA(a-25:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

PA(a-25:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C48H87O9P (838.6087)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/a-25:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/a-25:0)

C48H87O9P (838.6087)


   

PA(a-25:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

PA(a-25:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

C48H87O9P (838.6087)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/a-25:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/a-25:0)

C48H87O9P (838.6087)


   

PA(a-25:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

PA(a-25:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C48H87O9P (838.6087)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/a-25:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/a-25:0)

C48H87O9P (838.6087)


   

PA(a-25:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

PA(a-25:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

C48H87O9P (838.6087)


   

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/a-25:0)

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/a-25:0)

C48H87O9P (838.6087)


   

PA(a-25:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

PA(a-25:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

C48H87O9P (838.6087)


   

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/a-25:0)

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/a-25:0)

C48H87O9P (838.6087)


   

PA(a-25:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

PA(a-25:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

C48H87O9P (838.6087)


   

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/a-25:0)

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/a-25:0)

C48H87O9P (838.6087)


   

PA(a-25:0/20:4(5Z,7E,11Z,14Z)-OH(9))

PA(a-25:0/20:4(5Z,7E,11Z,14Z)-OH(9))

C48H87O9P (838.6087)


   

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/a-25:0)

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/a-25:0)

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexacos-15-enoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexacos-15-enoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] (Z)-hexacos-15-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] (Z)-hexacos-15-enoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-icosoxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-icosoxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] tetracosanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] tetracosanoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]propan-2-yl] hexadecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]propan-2-yl] hexadecanoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]propan-2-yl] (Z)-hexadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]propan-2-yl] (Z)-hexadec-9-enoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetracosoxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetracosoxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-docosa-13,16-dienoxy]propan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-docosa-13,16-dienoxy]propan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propan-2-yl] (Z)-octadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propan-2-yl] (Z)-octadec-9-enoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]propan-2-yl] (Z)-icos-11-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]propan-2-yl] (Z)-icos-11-enoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(15Z,18Z)-hexacosa-15,18-dienoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(15Z,18Z)-hexacosa-15,18-dienoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-docos-13-enoxy]propan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-docos-13-enoxy]propan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (Z)-tetracos-13-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (Z)-tetracos-13-enoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propan-2-yl] octadecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propan-2-yl] octadecanoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetracos-13-enoxy]propan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetracos-13-enoxy]propan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-docosoxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-docosoxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]propan-2-yl] icosanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]propan-2-yl] icosanoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] (Z)-docos-13-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] (Z)-docos-13-enoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] docosanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] docosanoate

C48H87O9P (838.6087)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C48H87O9P (838.6087)


   

[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-octanoyloxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-octanoyloxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C55H82O6 (838.6111)


   

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-octanoyloxypropyl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-octanoyloxypropyl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C55H82O6 (838.6111)


   

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C55H82O6 (838.6111)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C55H82O6 (838.6111)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C55H82O6 (838.6111)


   

[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C55H82O6 (838.6111)


   

2,3-bis[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy]propyl (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

2,3-bis[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy]propyl (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C55H82O6 (838.6111)


   

[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C55H82O6 (838.6111)


   

6-[3-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-2-octadecanoyloxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-2-octadecanoyloxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C48H86O11 (838.617)


   

6-[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-tricosanoyloxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-tricosanoyloxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C48H86O11 (838.617)


   

6-[3-[(Z)-hexacos-15-enoyl]oxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(Z)-hexacos-15-enoyl]oxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C48H86O11 (838.617)


   

6-[3-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-2-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-2-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C48H86O11 (838.617)


   

6-[3-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-2-heptadecanoyloxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-2-heptadecanoyloxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C48H86O11 (838.617)


   

6-[3-[(Z)-henicos-11-enoyl]oxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(Z)-henicos-11-enoyl]oxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C48H86O11 (838.617)


   

6-[3-[(Z)-docos-13-enoyl]oxy-2-[(Z)-heptadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(Z)-docos-13-enoyl]oxy-2-[(Z)-heptadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C48H86O11 (838.617)


   

3,4,5-trihydroxy-6-[3-[(Z)-icos-11-enoyl]oxy-2-[(Z)-nonadec-9-enoyl]oxypropoxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[3-[(Z)-icos-11-enoyl]oxy-2-[(Z)-nonadec-9-enoyl]oxypropoxy]oxane-2-carboxylic acid

C48H86O11 (838.617)


   

3,4,5-trihydroxy-6-[2-[(Z)-pentadec-9-enoyl]oxy-3-[(Z)-tetracos-13-enoyl]oxypropoxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[2-[(Z)-pentadec-9-enoyl]oxy-3-[(Z)-tetracos-13-enoyl]oxypropoxy]oxane-2-carboxylic acid

C48H86O11 (838.617)


   

3,4,5-trihydroxy-6-[3-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-2-nonadecanoyloxypropoxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[3-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-2-nonadecanoyloxypropoxy]oxane-2-carboxylic acid

C48H86O11 (838.617)


   

3,4,5-trihydroxy-6-[2-icosanoyloxy-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[2-icosanoyloxy-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]oxane-2-carboxylic acid

C48H86O11 (838.617)


   

6-[2-docosanoyloxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[2-docosanoyloxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C48H86O11 (838.617)


   

3,4,5-trihydroxy-6-[2-pentadecanoyloxy-3-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[2-pentadecanoyloxy-3-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]oxane-2-carboxylic acid

C48H86O11 (838.617)


   

6-[2-henicosanoyloxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[2-henicosanoyloxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C48H86O11 (838.617)


   

[1-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropan-2-yl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate

[1-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropan-2-yl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate

C55H82O6 (838.6111)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C55H82O6 (838.6111)


   

[2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

[2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

C55H82O6 (838.6111)


   

[1-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate

[1-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate

C55H82O6 (838.6111)


   

[2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C55H82O6 (838.6111)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C55H82O6 (838.6111)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C55H82O6 (838.6111)


   

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C55H82O6 (838.6111)


   

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (9Z,11Z,13Z,15Z)-henicosa-9,11,13,15-tetraenoate

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (9Z,11Z,13Z,15Z)-henicosa-9,11,13,15-tetraenoate

C55H82O6 (838.6111)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate

C55H82O6 (838.6111)


   

[2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

[2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

C55H82O6 (838.6111)


   

[1-[(Z)-dodec-5-enoyl]oxy-3-[(7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[(Z)-dodec-5-enoyl]oxy-3-[(7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C55H82O6 (838.6111)


   

[2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

[2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

C55H82O6 (838.6111)


   

[3-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxy-2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

[3-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxy-2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

C55H82O6 (838.6111)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(11Z,13Z,15Z)-octadeca-11,13,15-trienoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(11Z,13Z,15Z)-octadeca-11,13,15-trienoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C55H82O6 (838.6111)


   

[1-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy-3-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropan-2-yl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate

[1-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy-3-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropan-2-yl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate

C55H82O6 (838.6111)


   

[3-dodecanoyloxy-2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

[3-dodecanoyloxy-2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

C55H82O6 (838.6111)


   

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(Z)-hexadec-7-enoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(Z)-hexadec-7-enoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

C55H82O6 (838.6111)


   

[3-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxy-2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate

[3-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxy-2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate

C55H82O6 (838.6111)


   

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C55H82O6 (838.6111)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropyl] (9Z,11Z,13Z,15Z)-henicosa-9,11,13,15-tetraenoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropyl] (9Z,11Z,13Z,15Z)-henicosa-9,11,13,15-tetraenoate

C55H82O6 (838.6111)


   

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C55H82O6 (838.6111)


   

[2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C55H82O6 (838.6111)


   

2,3-bis[[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy]propyl (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

2,3-bis[[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy]propyl (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

C55H82O6 (838.6111)


   

[3-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxy-2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

[3-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxy-2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

C55H82O6 (838.6111)


   

[2-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienoyl]oxy-3-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoate

[2-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienoyl]oxy-3-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoate

C55H82O6 (838.6111)


   

[2-[(11Z,14Z)-heptadeca-11,14-dienoyl]oxy-3-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

[2-[(11Z,14Z)-heptadeca-11,14-dienoyl]oxy-3-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

C55H82O6 (838.6111)


   

[2-[(4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

[2-[(4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

C55H82O6 (838.6111)


   

[3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate

[3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate

C55H82O6 (838.6111)


   

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-tetradecanoyloxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-tetradecanoyloxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

C55H82O6 (838.6111)


   

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate

C55H82O6 (838.6111)


   

[2-[(4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

[2-[(4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

C55H82O6 (838.6111)


   

2,3-bis[[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy]propyl (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

2,3-bis[[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy]propyl (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

C55H82O6 (838.6111)


   

[1-[(4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoate

[1-[(4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoate

C55H82O6 (838.6111)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(10Z,12Z)-octadeca-10,12-dienoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(10Z,12Z)-octadeca-10,12-dienoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

C55H82O6 (838.6111)


   

[3-[(Z)-dodec-5-enoyl]oxy-2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[3-[(Z)-dodec-5-enoyl]oxy-2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C55H82O6 (838.6111)


   

2,3-bis[[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy]propyl (11Z,14Z)-icosa-11,14-dienoate

2,3-bis[[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy]propyl (11Z,14Z)-icosa-11,14-dienoate

C55H82O6 (838.6111)


   

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (5Z,8Z,11Z)-icosa-5,8,11-trienoate

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (5Z,8Z,11Z)-icosa-5,8,11-trienoate

C55H82O6 (838.6111)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C55H82O6 (838.6111)


   

[1-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropan-2-yl] (10Z,12Z)-octadeca-10,12-dienoate

[1-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropan-2-yl] (10Z,12Z)-octadeca-10,12-dienoate

C55H82O6 (838.6111)


   

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxypropyl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxypropyl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

C55H82O6 (838.6111)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoyl]oxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoyl]oxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate

C55H82O6 (838.6111)


   

[2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate

[2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate

C55H82O6 (838.6111)


   

[3-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxy-2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[3-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxy-2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C55H82O6 (838.6111)


   

[2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

[2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

C55H82O6 (838.6111)


   

[3-dodecanoyloxy-2-[(7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

[3-dodecanoyloxy-2-[(7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

C55H82O6 (838.6111)


   

[1-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-3-[(7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

[1-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-3-[(7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

C55H82O6 (838.6111)


   

[1-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropan-2-yl] (5Z,8Z,11Z)-icosa-5,8,11-trienoate

[1-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropan-2-yl] (5Z,8Z,11Z)-icosa-5,8,11-trienoate

C55H82O6 (838.6111)


   

[2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C55H82O6 (838.6111)


   

[2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoate

[2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoate

C55H82O6 (838.6111)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C55H82O6 (838.6111)


   

[2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

[2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

C55H82O6 (838.6111)


   

[2-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[2-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C55H82O6 (838.6111)


   

[2-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienoyl]oxy-3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

[2-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienoyl]oxy-3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

C55H82O6 (838.6111)


   

[2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C55H82O6 (838.6111)


   

2,3-bis[[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxy]propyl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

2,3-bis[[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxy]propyl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C55H82O6 (838.6111)


   

[2-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

[2-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

C55H82O6 (838.6111)


   

[1-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

[1-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

C55H82O6 (838.6111)


   

[2-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienoyl]oxy-3-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

[2-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienoyl]oxy-3-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

C55H82O6 (838.6111)


   

[2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C55H82O6 (838.6111)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(11Z,13Z,15Z)-octadeca-11,13,15-trienoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(11Z,13Z,15Z)-octadeca-11,13,15-trienoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

C55H82O6 (838.6111)


   

[2-[(11Z,13Z,15Z)-octadeca-11,13,15-trienoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

[2-[(11Z,13Z,15Z)-octadeca-11,13,15-trienoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

C55H82O6 (838.6111)


   

[3-[(Z)-dodec-5-enoyl]oxy-2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

[3-[(Z)-dodec-5-enoyl]oxy-2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

C55H82O6 (838.6111)


   

[2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

[2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

C55H82O6 (838.6111)


   

[2-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

[2-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

C55H82O6 (838.6111)


   

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropan-2-yl] (11E,13E,15E)-octadeca-11,13,15-trienoate

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropan-2-yl] (11E,13E,15E)-octadeca-11,13,15-trienoate

C55H82O6 (838.6111)


   

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (11E,13E,15E)-octadeca-11,13,15-trienoate

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (11E,13E,15E)-octadeca-11,13,15-trienoate

C55H82O6 (838.6111)


   

[1-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[1-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C55H82O6 (838.6111)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(E)-hexadec-7-enoyl]oxypropyl] (7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(E)-hexadec-7-enoyl]oxypropyl] (7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoate

C55H82O6 (838.6111)


   

[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] (7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoate

[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] (7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoate

C55H82O6 (838.6111)


   

2,3-bis[[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy]propyl (7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoate

2,3-bis[[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy]propyl (7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoate

C55H82O6 (838.6111)


   

[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoate

[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoate

C55H82O6 (838.6111)


   

[2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoate

[2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoate

C55H82O6 (838.6111)


   

[2-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoate

[2-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoate

C55H82O6 (838.6111)


   

[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C55H82O6 (838.6111)


   

2,3-bis[[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy]propyl (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

2,3-bis[[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy]propyl (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C55H82O6 (838.6111)


   

2,3-bis[[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy]propyl (11E,14E)-icosa-11,14-dienoate

2,3-bis[[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy]propyl (11E,14E)-icosa-11,14-dienoate

C55H82O6 (838.6111)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C55H82O6 (838.6111)


   

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropan-2-yl] (10E,12E)-octadeca-10,12-dienoate

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropan-2-yl] (10E,12E)-octadeca-10,12-dienoate

C55H82O6 (838.6111)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C55H82O6 (838.6111)


   

[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C55H82O6 (838.6111)


   

[2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoate

[2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoate

C55H82O6 (838.6111)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C55H82O6 (838.6111)


   

2-[carboxy-[2-[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]oxy-3-undecanoyloxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]oxy-3-undecanoyloxypropoxy]methoxy]ethyl-trimethylazanium

C51H84NO8+ (838.6197)


   

2-[carboxy-[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C51H84NO8+ (838.6197)


   

2-[carboxy-[2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C51H84NO8+ (838.6197)


   

2-[carboxy-[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C51H84NO8+ (838.6197)


   

2-[carboxy-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C51H84NO8+ (838.6197)


   

2-[carboxy-[2-[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]oxy-3-nonanoyloxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]oxy-3-nonanoyloxypropoxy]methoxy]ethyl-trimethylazanium

C51H84NO8+ (838.6197)


   

TG(52:12)

TG(18:2_12:4_22:6)

C55H82O6 (838.6111)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   

PG O-16:0/26:5

PG O-16:0/26:5

C48H87O9P (838.6087)


   

PG O-18:1/24:4

PG O-18:1/24:4

C48H87O9P (838.6087)


   

PG O-20:0/22:5

PG O-20:0/22:5

C48H87O9P (838.6087)


   

PG O-20:1/22:4

PG O-20:1/22:4

C48H87O9P (838.6087)


   

PG O-22:0/20:5

PG O-22:0/20:5

C48H87O9P (838.6087)


   

PG O-22:1/20:4

PG O-22:1/20:4

C48H87O9P (838.6087)


   

PG O-22:2/20:3

PG O-22:2/20:3

C48H87O9P (838.6087)


   

PG P-18:0/24:4

PG P-18:0/24:4

C48H87O9P (838.6087)


   

PG P-18:0/24:4 or PG O-18:1/24:4

PG P-18:0/24:4 or PG O-18:1/24:4

C48H87O9P (838.6087)


   

PG P-20:0/22:4

PG P-20:0/22:4

C48H87O9P (838.6087)


   

PG P-20:0/22:4 or PG O-20:1/22:4

PG P-20:0/22:4 or PG O-20:1/22:4

C48H87O9P (838.6087)


   

PG P-22:0/20:4

PG P-22:0/20:4

C48H87O9P (838.6087)


   

PG P-22:0/20:4 or PG O-22:1/20:4

PG P-22:0/20:4 or PG O-22:1/20:4

C48H87O9P (838.6087)


   

PG P-22:1/20:3

PG P-22:1/20:3

C48H87O9P (838.6087)


   

PG P-22:1/20:3 or PG O-22:2/20:3

PG P-22:1/20:3 or PG O-22:2/20:3

C48H87O9P (838.6087)


   
   

PG P-42:4 or PG O-42:5

PG P-42:4 or PG O-42:5

C48H87O9P (838.6087)