Exact Mass: 837.5883

Exact Mass Matches: 837.5883

Found 150 metabolites which its exact mass value is equals to given mass value 837.5883, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

PE(22:0/20:4(6E,8Z,11Z,14Z)+=O(5))

(2-aminoethoxy)[(2R)-3-(docosanoyloxy)-2-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(22:0/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:0/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one docosanoyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(6E,8Z,11Z,14Z)+=O(5)/22:0)

(2-aminoethoxy)[(2R)-2-(docosanoyloxy)-3-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(20:4(6E,8Z,11Z,14Z)+=O(5)/22:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(6E,8Z,11Z,14Z)+=O(5)/22:0), in particular, consists of one chain of one 5-oxo-eicosatetraenoyl at the C-1 position and one chain of docosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:0/20:4(5Z,8Z,11Z,13E)+=O(15))

(2-aminoethoxy)[(2R)-3-(docosanoyloxy)-2-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(22:0/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:0/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of one docosanoyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(5Z,8Z,11Z,13E)+=O(15)/22:0)

(2-aminoethoxy)[(2R)-2-(docosanoyloxy)-3-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(20:4(5Z,8Z,11Z,13E)+=O(15)/22:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(5Z,8Z,11Z,13E)+=O(15)/22:0), in particular, consists of one chain of one 15-oxo-eicosatetraenoyl at the C-1 position and one chain of docosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

(2-aminoethoxy)[(2R)-3-(docosanoyloxy)-2-{[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(22:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)), in particular, consists of one chain of one docosanoyl at the C-1 position and one chain of 18-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/22:0)

(2-aminoethoxy)[(2R)-2-(docosanoyloxy)-3-{[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/22:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/22:0), in particular, consists of one chain of one 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of docosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

(2-aminoethoxy)[(2R)-3-(docosanoyloxy)-2-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(22:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)), in particular, consists of one chain of one docosanoyl at the C-1 position and one chain of 15-hydroxyleicosapentaenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/22:0)

(2-aminoethoxy)[(2R)-2-(docosanoyloxy)-3-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/22:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/22:0), in particular, consists of one chain of one 15-hydroxyleicosapentaenyl at the C-1 position and one chain of docosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

(2-aminoethoxy)[(2R)-3-(docosanoyloxy)-2-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(22:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)), in particular, consists of one chain of one docosanoyl at the C-1 position and one chain of 12-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/22:0)

(2-aminoethoxy)[(2R)-2-(docosanoyloxy)-3-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/22:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/22:0), in particular, consists of one chain of one 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of docosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

(2-aminoethoxy)[(2R)-3-(docosanoyloxy)-2-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(22:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)), in particular, consists of one chain of one docosanoyl at the C-1 position and one chain of 5-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/22:0)

(2-aminoethoxy)[(2R)-2-(docosanoyloxy)-3-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/22:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/22:0), in particular, consists of one chain of one 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of docosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:1(13Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

(2-aminoethoxy)[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(22:1(13Z)/20:3(5Z,8Z,11Z)-O(14R,15S)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:1(13Z)/20:3(5Z,8Z,11Z)-O(14R,15S)), in particular, consists of one chain of one 13Z-docosenoyl at the C-1 position and one chain of 14,15-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:3(5Z,8Z,11Z)-O(14R,15S)/22:1(13Z))

(2-aminoethoxy)[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(20:3(5Z,8Z,11Z)-O(14R,15S)/22:1(13Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:3(5Z,8Z,11Z)-O(14R,15S)/22:1(13Z)), in particular, consists of one chain of one 14,15-epoxyeicosatrienoyl at the C-1 position and one chain of 13Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:1(13Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

(2-aminoethoxy)[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(22:1(13Z)/20:3(5Z,8Z,14Z)-O(11S,12R)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:1(13Z)/20:3(5Z,8Z,14Z)-O(11S,12R)), in particular, consists of one chain of one 13Z-docosenoyl at the C-1 position and one chain of 11,12-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:3(5Z,8Z,14Z)-O(11S,12R)/22:1(13Z))

(2-aminoethoxy)[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(20:3(5Z,8Z,14Z)-O(11S,12R)/22:1(13Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:3(5Z,8Z,14Z)-O(11S,12R)/22:1(13Z)), in particular, consists of one chain of one 11,12-epoxyeicosatrienoyl at the C-1 position and one chain of 13Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:1(13Z)/20:3(5Z,11Z,14Z)-O(8,9))

(2-aminoethoxy)[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(22:1(13Z)/20:3(5Z,11Z,14Z)-O(8,9)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:1(13Z)/20:3(5Z,11Z,14Z)-O(8,9)), in particular, consists of one chain of one 13Z-docosenoyl at the C-1 position and one chain of 8,9--epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:3(5Z,11Z,14Z)-O(8,9)/22:1(13Z))

(2-aminoethoxy)[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(20:3(5Z,11Z,14Z)-O(8,9)/22:1(13Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:3(5Z,11Z,14Z)-O(8,9)/22:1(13Z)), in particular, consists of one chain of one 8,9--epoxyeicosatrienoyl at the C-1 position and one chain of 13Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:1(13Z)/20:3(8Z,11Z,14Z)-O(5,6))

(2-aminoethoxy)[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(22:1(13Z)/20:3(8Z,11Z,14Z)-O(5,6)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:1(13Z)/20:3(8Z,11Z,14Z)-O(5,6)), in particular, consists of one chain of one 13Z-docosenoyl at the C-1 position and one chain of 5,6-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:3(8Z,11Z,14Z)-O(5,6)/22:1(13Z))

(2-aminoethoxy)[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(20:3(8Z,11Z,14Z)-O(5,6)/22:1(13Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:3(8Z,11Z,14Z)-O(5,6)/22:1(13Z)), in particular, consists of one chain of one 5,6-epoxyeicosatrienoyl at the C-1 position and one chain of 13Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:1(13Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

(2-aminoethoxy)[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(22:1(13Z)/20:4(5Z,8Z,11Z,14Z)-OH(20)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:1(13Z)/20:4(5Z,8Z,11Z,14Z)-OH(20)), in particular, consists of one chain of one 13Z-docosenoyl at the C-1 position and one chain of 20-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(5Z,8Z,11Z,14Z)-OH(20)/22:1(13Z))

(2-aminoethoxy)[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(20:4(5Z,8Z,11Z,14Z)-OH(20)/22:1(13Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(5Z,8Z,11Z,14Z)-OH(20)/22:1(13Z)), in particular, consists of one chain of one 20-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 13Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:1(13Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

(2-aminoethoxy)[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-{[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(22:1(13Z)/20:4(6E,8Z,11Z,14Z)-OH(5S)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:1(13Z)/20:4(6E,8Z,11Z,14Z)-OH(5S)), in particular, consists of one chain of one 13Z-docosenoyl at the C-1 position and one chain of 5-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(6E,8Z,11Z,14Z)-OH(5S)/22:1(13Z))

(2-aminoethoxy)[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-{[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(20:4(6E,8Z,11Z,14Z)-OH(5S)/22:1(13Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(6E,8Z,11Z,14Z)-OH(5S)/22:1(13Z)), in particular, consists of one chain of one 5-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 13Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:1(13Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

(2-aminoethoxy)[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-{[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(22:1(13Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:1(13Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S)), in particular, consists of one chain of one 13Z-docosenoyl at the C-1 position and one chain of 19-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(5Z,8Z,11Z,14Z)-OH(19S)/22:1(13Z))

(2-aminoethoxy)[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-{[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(20:4(5Z,8Z,11Z,14Z)-OH(19S)/22:1(13Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(5Z,8Z,11Z,14Z)-OH(19S)/22:1(13Z)), in particular, consists of one chain of one 19-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 13Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:1(13Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

(2-aminoethoxy)[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-{[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(22:1(13Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:1(13Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R)), in particular, consists of one chain of one 13Z-docosenoyl at the C-1 position and one chain of 18-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(5Z,8Z,11Z,14Z)-OH(18R)/22:1(13Z))

(2-aminoethoxy)[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-{[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(20:4(5Z,8Z,11Z,14Z)-OH(18R)/22:1(13Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(5Z,8Z,11Z,14Z)-OH(18R)/22:1(13Z)), in particular, consists of one chain of one 18-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 13Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:1(13Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

(2-aminoethoxy)[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(22:1(13Z)/20:4(5Z,8Z,11Z,14Z)-OH(17)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:1(13Z)/20:4(5Z,8Z,11Z,14Z)-OH(17)), in particular, consists of one chain of one 13Z-docosenoyl at the C-1 position and one chain of 17-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(5Z,8Z,11Z,14Z)-OH(17)/22:1(13Z))

(2-aminoethoxy)[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(20:4(5Z,8Z,11Z,14Z)-OH(17)/22:1(13Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(5Z,8Z,11Z,14Z)-OH(17)/22:1(13Z)), in particular, consists of one chain of one 17-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 13Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:1(13Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

(2-aminoethoxy)[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-{[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(22:1(13Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:1(13Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R)), in particular, consists of one chain of one 13Z-docosenoyl at the C-1 position and one chain of 16-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(5Z,8Z,11Z,14Z)-OH(16R)/22:1(13Z))

(2-aminoethoxy)[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-{[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(20:4(5Z,8Z,11Z,14Z)-OH(16R)/22:1(13Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(5Z,8Z,11Z,14Z)-OH(16R)/22:1(13Z)), in particular, consists of one chain of one 16-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 13Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:1(13Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

(2-aminoethoxy)[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-{[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(22:1(13Z)/20:4(5Z,8Z,11Z,13E)-OH(15S)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:1(13Z)/20:4(5Z,8Z,11Z,13E)-OH(15S)), in particular, consists of one chain of one 13Z-docosenoyl at the C-1 position and one chain of 15-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(5Z,8Z,11Z,13E)-OH(15S)/22:1(13Z))

(2-aminoethoxy)[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-{[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(20:4(5Z,8Z,11Z,13E)-OH(15S)/22:1(13Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(5Z,8Z,11Z,13E)-OH(15S)/22:1(13Z)), in particular, consists of one chain of one 15-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 13Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:1(13Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

(2-aminoethoxy)[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-{[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(22:1(13Z)/20:4(5Z,8Z,10E,14Z)-OH(12S)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:1(13Z)/20:4(5Z,8Z,10E,14Z)-OH(12S)), in particular, consists of one chain of one 13Z-docosenoyl at the C-1 position and one chain of 12-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(5Z,8Z,10E,14Z)-OH(12S)/22:1(13Z))

(2-aminoethoxy)[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-{[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(20:4(5Z,8Z,10E,14Z)-OH(12S)/22:1(13Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(5Z,8Z,10E,14Z)-OH(12S)/22:1(13Z)), in particular, consists of one chain of one 12-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 13Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:1(13Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

(2-aminoethoxy)[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-{[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(22:1(13Z)/20:4(5E,8Z,12Z,14Z)-OH(11R)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:1(13Z)/20:4(5E,8Z,12Z,14Z)-OH(11R)), in particular, consists of one chain of one 13Z-docosenoyl at the C-1 position and one chain of 11-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(5E,8Z,12Z,14Z)-OH(11R)/22:1(13Z))

(2-aminoethoxy)[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-{[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(20:4(5E,8Z,12Z,14Z)-OH(11R)/22:1(13Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(5E,8Z,12Z,14Z)-OH(11R)/22:1(13Z)), in particular, consists of one chain of one 11-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 13Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:1(13Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

(2-aminoethoxy)[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(22:1(13Z)/20:4(5Z,7E,11Z,14Z)-OH(9)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:1(13Z)/20:4(5Z,7E,11Z,14Z)-OH(9)), in particular, consists of one chain of one 13Z-docosenoyl at the C-1 position and one chain of 9-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(5Z,7E,11Z,14Z)-OH(9)/22:1(13Z))

(2-aminoethoxy)[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(20:4(5Z,7E,11Z,14Z)-OH(9)/22:1(13Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(5Z,7E,11Z,14Z)-OH(9)/22:1(13Z)), in particular, consists of one chain of one 9-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 13Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:2(13Z,16Z)/20:3(6,8,11)-OH(5))

(2-aminoethoxy)[(2R)-3-[(13Z,16Z)-docosa-13,16-dienoyloxy]-2-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(22:2(13Z,16Z)/20:3(6,8,11)-OH(5)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:2(13Z,16Z)/20:3(6,8,11)-OH(5)), in particular, consists of one chain of one 13Z,16Z-docosadienoyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:3(6,8,11)-OH(5)/22:2(13Z,16Z))

(2-aminoethoxy)[(2R)-2-[(13Z,16Z)-docosa-13,16-dienoyloxy]-3-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}propoxy]phosphinic acid

C47H84NO9P (837.5883)


PE(20:3(6,8,11)-OH(5)/22:2(13Z,16Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:3(6,8,11)-OH(5)/22:2(13Z,16Z)), in particular, consists of one chain of one 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of 13Z,16Z-docosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

Phosphatidylserine 18:0-22:4

Phosphatidylserine 18:0-22:4

C47H84NO9P (837.5883)


PRECURSOR_TYPE [M-H]-/[M-Ser]-

   
   

PE(22:0/20:4(6E,8Z,11Z,14Z)+=O(5))

PE(22:0/20:4(6E,8Z,11Z,14Z)+=O(5))

C47H84NO9P (837.5883)


   

PE(20:4(6E,8Z,11Z,14Z)+=O(5)/22:0)

PE(20:4(6E,8Z,11Z,14Z)+=O(5)/22:0)

C47H84NO9P (837.5883)


   

PE(22:0/20:4(5Z,8Z,11Z,13E)+=O(15))

PE(22:0/20:4(5Z,8Z,11Z,13E)+=O(15))

C47H84NO9P (837.5883)


   

PE(20:4(5Z,8Z,11Z,13E)+=O(15)/22:0)

PE(20:4(5Z,8Z,11Z,13E)+=O(15)/22:0)

C47H84NO9P (837.5883)


   

PE(22:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

PE(22:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C47H84NO9P (837.5883)


   

PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/22:0)

PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/22:0)

C47H84NO9P (837.5883)


   

PE(22:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

PE(22:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C47H84NO9P (837.5883)


   

PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/22:0)

PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/22:0)

C47H84NO9P (837.5883)


   

PE(22:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

PE(22:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C47H84NO9P (837.5883)


   

PE(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/22:0)

PE(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/22:0)

C47H84NO9P (837.5883)


   

PE(22:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

PE(22:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C47H84NO9P (837.5883)


   

PE(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/22:0)

PE(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/22:0)

C47H84NO9P (837.5883)


   

PE(22:1(13Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

PE(22:1(13Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

C47H84NO9P (837.5883)


   

PE(20:3(5Z,8Z,11Z)-O(14R,15S)/22:1(13Z))

PE(20:3(5Z,8Z,11Z)-O(14R,15S)/22:1(13Z))

C47H84NO9P (837.5883)


   

PE(22:1(13Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

PE(22:1(13Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

C47H84NO9P (837.5883)


   

PE(20:3(5Z,8Z,14Z)-O(11S,12R)/22:1(13Z))

PE(20:3(5Z,8Z,14Z)-O(11S,12R)/22:1(13Z))

C47H84NO9P (837.5883)


   

PE(22:1(13Z)/20:3(5Z,11Z,14Z)-O(8,9))

PE(22:1(13Z)/20:3(5Z,11Z,14Z)-O(8,9))

C47H84NO9P (837.5883)


   

PE(20:3(5Z,11Z,14Z)-O(8,9)/22:1(13Z))

PE(20:3(5Z,11Z,14Z)-O(8,9)/22:1(13Z))

C47H84NO9P (837.5883)


   

PE(22:1(13Z)/20:3(8Z,11Z,14Z)-O(5,6))

PE(22:1(13Z)/20:3(8Z,11Z,14Z)-O(5,6))

C47H84NO9P (837.5883)


   

PE(20:3(8Z,11Z,14Z)-O(5,6)/22:1(13Z))

PE(20:3(8Z,11Z,14Z)-O(5,6)/22:1(13Z))

C47H84NO9P (837.5883)


   

PE(22:1(13Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

PE(22:1(13Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

C47H84NO9P (837.5883)


   

PE(20:4(5Z,8Z,11Z,14Z)-OH(20)/22:1(13Z))

PE(20:4(5Z,8Z,11Z,14Z)-OH(20)/22:1(13Z))

C47H84NO9P (837.5883)


   

PE(22:1(13Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

PE(22:1(13Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

C47H84NO9P (837.5883)


   

PE(20:4(6E,8Z,11Z,14Z)-OH(5S)/22:1(13Z))

PE(20:4(6E,8Z,11Z,14Z)-OH(5S)/22:1(13Z))

C47H84NO9P (837.5883)


   

PE(22:1(13Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

PE(22:1(13Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C47H84NO9P (837.5883)


   

PE(20:4(5Z,8Z,11Z,14Z)-OH(19S)/22:1(13Z))

PE(20:4(5Z,8Z,11Z,14Z)-OH(19S)/22:1(13Z))

C47H84NO9P (837.5883)


   

PE(22:1(13Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

PE(22:1(13Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C47H84NO9P (837.5883)


   

PE(20:4(5Z,8Z,11Z,14Z)-OH(18R)/22:1(13Z))

PE(20:4(5Z,8Z,11Z,14Z)-OH(18R)/22:1(13Z))

C47H84NO9P (837.5883)


   

PE(22:1(13Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

PE(22:1(13Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

C47H84NO9P (837.5883)


   

PE(20:4(5Z,8Z,11Z,14Z)-OH(17)/22:1(13Z))

PE(20:4(5Z,8Z,11Z,14Z)-OH(17)/22:1(13Z))

C47H84NO9P (837.5883)


   

PE(22:1(13Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

PE(22:1(13Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C47H84NO9P (837.5883)


   

PE(20:4(5Z,8Z,11Z,14Z)-OH(16R)/22:1(13Z))

PE(20:4(5Z,8Z,11Z,14Z)-OH(16R)/22:1(13Z))

C47H84NO9P (837.5883)


   

PE(22:1(13Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

PE(22:1(13Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

C47H84NO9P (837.5883)


   

PE(20:4(5Z,8Z,11Z,13E)-OH(15S)/22:1(13Z))

PE(20:4(5Z,8Z,11Z,13E)-OH(15S)/22:1(13Z))

C47H84NO9P (837.5883)


   

PE(22:1(13Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

PE(22:1(13Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

C47H84NO9P (837.5883)


   

PE(20:4(5Z,8Z,10E,14Z)-OH(12S)/22:1(13Z))

PE(20:4(5Z,8Z,10E,14Z)-OH(12S)/22:1(13Z))

C47H84NO9P (837.5883)


   

PE(22:1(13Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

PE(22:1(13Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

C47H84NO9P (837.5883)


   

PE(20:4(5E,8Z,12Z,14Z)-OH(11R)/22:1(13Z))

PE(20:4(5E,8Z,12Z,14Z)-OH(11R)/22:1(13Z))

C47H84NO9P (837.5883)


   

PE(22:1(13Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

PE(22:1(13Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

C47H84NO9P (837.5883)


   

PE(20:4(5Z,7E,11Z,14Z)-OH(9)/22:1(13Z))

PE(20:4(5Z,7E,11Z,14Z)-OH(9)/22:1(13Z))

C47H84NO9P (837.5883)


   

PE(22:2(13Z,16Z)/20:3(6,8,11)-OH(5))

PE(22:2(13Z,16Z)/20:3(6,8,11)-OH(5))

C47H84NO9P (837.5883)


   

PE(20:3(6,8,11)-OH(5)/22:2(13Z,16Z))

PE(20:3(6,8,11)-OH(5)/22:2(13Z,16Z))

C47H84NO9P (837.5883)


   

2-amino-3-[[3-[(Z)-henicos-11-enoxy]-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(Z)-henicos-11-enoxy]-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C47H84NO9P (837.5883)


   

2-amino-3-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-nonadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-nonadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C47H84NO9P (837.5883)


   

2-amino-3-[[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C47H84NO9P (837.5883)


   

2-amino-3-[[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(Z)-nonadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(Z)-nonadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C47H84NO9P (837.5883)


   

2-amino-3-[[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-[(Z)-nonadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-[(Z)-nonadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C47H84NO9P (837.5883)


   

2-amino-3-[[3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C47H84NO9P (837.5883)


   

2-amino-3-[[3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]-2-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]-2-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C47H84NO9P (837.5883)


   

2-amino-3-[[3-henicosoxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-henicosoxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C47H84NO9P (837.5883)


   

2-amino-3-[[3-[(Z)-heptadec-9-enoxy]-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(Z)-heptadec-9-enoxy]-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C47H84NO9P (837.5883)


   

2-amino-3-[[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-[(Z)-pentadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-[(Z)-pentadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C47H84NO9P (837.5883)


   

2-amino-3-[[2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-3-pentadecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-3-pentadecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C47H84NO9P (837.5883)


   

2-amino-3-[[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C47H84NO9P (837.5883)


   

2-amino-3-[[2-[(Z)-heptadec-9-enoyl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(Z)-heptadec-9-enoyl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C47H84NO9P (837.5883)


   

2-amino-3-[[2-henicosanoyloxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-henicosanoyloxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C47H84NO9P (837.5883)


   

2-amino-3-[[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C47H84NO9P (837.5883)


   

2-amino-3-[[2-[(Z)-henicos-11-enoyl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(Z)-henicos-11-enoyl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C47H84NO9P (837.5883)


   

2-amino-3-[[2-heptadecanoyloxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-heptadecanoyloxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C47H84NO9P (837.5883)


   

2-amino-3-[[3-heptadecoxy-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-heptadecoxy-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C47H84NO9P (837.5883)


   

2-amino-3-[hydroxy-[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]-2-tricosanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]-2-tricosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C47H84NO9P (837.5883)


   

2-amino-3-[[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C47H84NO9P (837.5883)


   

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-nonadecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-nonadecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C47H84NO9P (837.5883)


   

2-amino-3-[[3-[(11Z,14Z)-henicosa-11,14-dienoxy]-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(11Z,14Z)-henicosa-11,14-dienoxy]-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C47H84NO9P (837.5883)


   

2-amino-3-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C47H84NO9P (837.5883)


   

2-amino-3-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-tricosoxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-tricosoxypropoxy]phosphoryl]oxypropanoic acid

C47H84NO9P (837.5883)


   

[1-[(2-amino-3-oxobutoxy)-hydroxyphosphoryl]oxy-3-octadecanoyloxypropan-2-yl] (4Z,7Z,10Z,13Z)-docosa-4,7,10,13-tetraenoate

[1-[(2-amino-3-oxobutoxy)-hydroxyphosphoryl]oxy-3-octadecanoyloxypropan-2-yl] (4Z,7Z,10Z,13Z)-docosa-4,7,10,13-tetraenoate

C47H84NO9P (837.5883)


   

2-[[(4E,8E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoyl]amino]-3-hydroxytrideca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoyl]amino]-3-hydroxytrideca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H82N2O6P+ (837.591)


   

2-[[(E)-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-6,9,12,15,18,21,24,27,30,33-decaenoyl]amino]-3-hydroxynon-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E)-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-6,9,12,15,18,21,24,27,30,33-decaenoyl]amino]-3-hydroxynon-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H82N2O6P+ (837.591)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]amino]pentadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]amino]pentadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C50H82N2O6P+ (837.591)


   
   

PE O-20:0/22:6;O2

PE O-20:0/22:6;O2

C47H84NO9P (837.5883)


   
   

PE P-20:0/22:5;O2

PE P-20:0/22:5;O2

C47H84NO9P (837.5883)


   
   
   
   
   
   
   

Hex2Cer 14:0;O2/17:0;O

Hex2Cer 14:0;O2/17:0;O

C43H83NO14 (837.5813)


   

Hex2Cer 15:0;O2/16:0;O

Hex2Cer 15:0;O2/16:0;O

C43H83NO14 (837.5813)


   

Hex2Cer 16:0;O2/15:0;O

Hex2Cer 16:0;O2/15:0;O

C43H83NO14 (837.5813)


   

Hex2Cer 17:0;O2/14:0;O

Hex2Cer 17:0;O2/14:0;O

C43H83NO14 (837.5813)


   

Hex2Cer 18:0;O2/13:0;O

Hex2Cer 18:0;O2/13:0;O

C43H83NO14 (837.5813)


   

Hex2Cer 19:0;O2/12:0;O

Hex2Cer 19:0;O2/12:0;O

C43H83NO14 (837.5813)


   

Hex2Cer 20:0;O2/11:0;O

Hex2Cer 20:0;O2/11:0;O

C43H83NO14 (837.5813)


   

Hex2Cer 21:0;O2/10:0;O

Hex2Cer 21:0;O2/10:0;O

C43H83NO14 (837.5813)


   

Hex2Cer 31:0;O2;O

Hex2Cer 31:0;O2;O

C43H83NO14 (837.5813)


   

LacCer 14:0;O2/17:0;O

LacCer 14:0;O2/17:0;O

C43H83NO14 (837.5813)


   

LacCer 15:0;O2/16:0;O

LacCer 15:0;O2/16:0;O

C43H83NO14 (837.5813)


   

LacCer 16:0;O2/15:0;O

LacCer 16:0;O2/15:0;O

C43H83NO14 (837.5813)


   

LacCer 17:0;O2/14:0;O

LacCer 17:0;O2/14:0;O

C43H83NO14 (837.5813)


   

LacCer 18:0;O2/13:0;O

LacCer 18:0;O2/13:0;O

C43H83NO14 (837.5813)


   

LacCer 19:0;O2/12:0;O

LacCer 19:0;O2/12:0;O

C43H83NO14 (837.5813)


   

LacCer 20:0;O2/11:0;O

LacCer 20:0;O2/11:0;O

C43H83NO14 (837.5813)


   

LacCer 21:0;O2/10:0;O

LacCer 21:0;O2/10:0;O

C43H83NO14 (837.5813)


   

LacCer 31:0;O2;O

LacCer 31:0;O2;O

C43H83NO14 (837.5813)


   
   

(2s)-2-{[(2s)-1-hydroxy-2-{[(2s)-1-hydroxy-2-({hydroxy[(4s)-4-hydroxy-1-{2-[(1-hydroxydodecylidene)amino]-2-methylpropanoyl}pyrrolidin-2-yl]methylidene}amino)-4-methylpentylidene]amino}-3-methylbutylidene]amino}-n-[(2s)-1-hydroxy-4-methylpentan-2-yl]pentanediimidic acid

(2s)-2-{[(2s)-1-hydroxy-2-{[(2s)-1-hydroxy-2-({hydroxy[(4s)-4-hydroxy-1-{2-[(1-hydroxydodecylidene)amino]-2-methylpropanoyl}pyrrolidin-2-yl]methylidene}amino)-4-methylpentylidene]amino}-3-methylbutylidene]amino}-n-[(2s)-1-hydroxy-4-methylpentan-2-yl]pentanediimidic acid

C43H79N7O9 (837.5939)


   

(2s)-2-{[(2s)-1-hydroxy-2-{[(2s)-1-hydroxy-2-({hydroxy[(4s)-4-hydroxy-1-{2-[(1-hydroxytetradecylidene)amino]-2-methylpropanoyl}pyrrolidin-2-yl]methylidene}amino)-4-methylpentylidene]amino}propylidene]amino}-n-[(2s)-1-hydroxy-4-methylpentan-2-yl]pentanediimidic acid

(2s)-2-{[(2s)-1-hydroxy-2-{[(2s)-1-hydroxy-2-({hydroxy[(4s)-4-hydroxy-1-{2-[(1-hydroxytetradecylidene)amino]-2-methylpropanoyl}pyrrolidin-2-yl]methylidene}amino)-4-methylpentylidene]amino}propylidene]amino}-n-[(2s)-1-hydroxy-4-methylpentan-2-yl]pentanediimidic acid

C43H79N7O9 (837.5939)


   

2-{[(2s)-1-hydroxy-2-{[1-hydroxy-2-({hydroxy[(2s,4s)-4-hydroxy-1-{2-[(1-hydroxydodecylidene)amino]-2-methylpropanoyl}pyrrolidin-2-yl]methylidene}amino)-4-methylpentylidene]amino}-3-methylbutylidene]amino}-n-[(2s)-1-hydroxy-4-methylpentan-2-yl]pentanediimidic acid

2-{[(2s)-1-hydroxy-2-{[1-hydroxy-2-({hydroxy[(2s,4s)-4-hydroxy-1-{2-[(1-hydroxydodecylidene)amino]-2-methylpropanoyl}pyrrolidin-2-yl]methylidene}amino)-4-methylpentylidene]amino}-3-methylbutylidene]amino}-n-[(2s)-1-hydroxy-4-methylpentan-2-yl]pentanediimidic acid

C43H79N7O9 (837.5939)


   

2-({1-hydroxy-2-[(1-hydroxy-2-{[hydroxy(4-hydroxy-1-{2-[(1-hydroxydodecylidene)amino]-2-methylpropanoyl}pyrrolidin-2-yl)methylidene]amino}-4-methylpentylidene)amino]-3-methylbutylidene}amino)-n-(1-hydroxy-4-methylpentan-2-yl)pentanediimidic acid

2-({1-hydroxy-2-[(1-hydroxy-2-{[hydroxy(4-hydroxy-1-{2-[(1-hydroxydodecylidene)amino]-2-methylpropanoyl}pyrrolidin-2-yl)methylidene]amino}-4-methylpentylidene)amino]-3-methylbutylidene}amino)-n-(1-hydroxy-4-methylpentan-2-yl)pentanediimidic acid

C43H79N7O9 (837.5939)


   

(2s)-2-{[(2s)-1-hydroxy-2-{[(2s)-1-hydroxy-2-({hydroxy[(2s,4r)-4-hydroxy-1-{2-[(1-hydroxytetradecylidene)amino]-2-methylpropanoyl}pyrrolidin-2-yl]methylidene}amino)-4-methylpentylidene]amino}propylidene]amino}-n-[(2s)-1-hydroxy-4-methylpentan-2-yl]pentanediimidic acid

(2s)-2-{[(2s)-1-hydroxy-2-{[(2s)-1-hydroxy-2-({hydroxy[(2s,4r)-4-hydroxy-1-{2-[(1-hydroxytetradecylidene)amino]-2-methylpropanoyl}pyrrolidin-2-yl]methylidene}amino)-4-methylpentylidene]amino}propylidene]amino}-n-[(2s)-1-hydroxy-4-methylpentan-2-yl]pentanediimidic acid

C43H79N7O9 (837.5939)


   

2-({1-hydroxy-2-[(1-hydroxy-2-{[hydroxy(4-hydroxy-1-{2-[(1-hydroxytetradecylidene)amino]-2-methylpropanoyl}pyrrolidin-2-yl)methylidene]amino}-4-methylpentylidene)amino]propylidene}amino)-n-(1-hydroxy-4-methylpentan-2-yl)pentanediimidic acid

2-({1-hydroxy-2-[(1-hydroxy-2-{[hydroxy(4-hydroxy-1-{2-[(1-hydroxytetradecylidene)amino]-2-methylpropanoyl}pyrrolidin-2-yl)methylidene]amino}-4-methylpentylidene)amino]propylidene}amino)-n-(1-hydroxy-4-methylpentan-2-yl)pentanediimidic acid

C43H79N7O9 (837.5939)