Exact Mass: 832.5465

Exact Mass Matches: 832.5465

Found 182 metabolites which its exact mass value is equals to given mass value 832.5465, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

PA(21:0/6 keto-PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-(henicosanoyloxy)propoxy]phosphonic acid

C44H81O12P (832.5465)


PA(21:0/6 keto-PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(21:0/6 keto-PGF1alpha), in particular, consists of one chain of one heneicosanoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(6 keto-PGF1alpha/21:0)

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-(henicosanoyloxy)propoxy]phosphonic acid

C44H81O12P (832.5465)


PA(6 keto-PGF1alpha/21:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(6 keto-PGF1alpha/21:0), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of heneicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(21:0/TXB2)

[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-(henicosanoyloxy)propoxy]phosphonic acid

C44H81O12P (832.5465)


PA(21:0/TXB2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(21:0/TXB2), in particular, consists of one chain of one heneicosanoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(TXB2/21:0)

[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-(henicosanoyloxy)propoxy]phosphonic acid

C44H81O12P (832.5465)


PA(TXB2/21:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(TXB2/21:0), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of heneicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-21:0/6 keto-PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-[(18-methylicosanoyl)oxy]propoxy]phosphonic acid

C44H81O12P (832.5465)


PA(a-21:0/6 keto-PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-21:0/6 keto-PGF1alpha), in particular, consists of one chain of one 18-methyleicosanoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(6 keto-PGF1alpha/a-21:0)

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-[(18-methylicosanoyl)oxy]propoxy]phosphonic acid

C44H81O12P (832.5465)


PA(6 keto-PGF1alpha/a-21:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(6 keto-PGF1alpha/a-21:0), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 18-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-21:0/TXB2)

[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-[(18-methylicosanoyl)oxy]propoxy]phosphonic acid

C44H81O12P (832.5465)


PA(a-21:0/TXB2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-21:0/TXB2), in particular, consists of one chain of one 18-methyleicosanoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(TXB2/a-21:0)

[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-[(18-methylicosanoyl)oxy]propoxy]phosphonic acid

C44H81O12P (832.5465)


PA(TXB2/a-21:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(TXB2/a-21:0), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 18-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-21:0/6 keto-PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-[(19-methylicosanoyl)oxy]propoxy]phosphonic acid

C44H81O12P (832.5465)


PA(i-21:0/6 keto-PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-21:0/6 keto-PGF1alpha), in particular, consists of one chain of one 19-methyleicosanoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(6 keto-PGF1alpha/i-21:0)

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-[(19-methylicosanoyl)oxy]propoxy]phosphonic acid

C44H81O12P (832.5465)


PA(6 keto-PGF1alpha/i-21:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(6 keto-PGF1alpha/i-21:0), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 19-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-21:0/TXB2)

[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-[(19-methylicosanoyl)oxy]propoxy]phosphonic acid

C44H81O12P (832.5465)


PA(i-21:0/TXB2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-21:0/TXB2), in particular, consists of one chain of one 19-methyleicosanoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(TXB2/i-21:0)

[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-[(19-methylicosanoyl)oxy]propoxy]phosphonic acid

C44H81O12P (832.5465)


PA(TXB2/i-21:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(TXB2/i-21:0), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 19-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:0/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-(octadecanoyloxy)propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C44H81O12P (832.5465)


PG(18:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:3(8Z,11Z,14Z)-2OH(5,6)/18:0)

[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-(octadecanoyloxy)propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C44H81O12P (832.5465)


PG(20:3(8Z,11Z,14Z)-2OH(5,6)/18:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:3(8Z,11Z,14Z)-2OH(5,6)/18:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:2(11Z,14Z)/18:1(12Z)-2OH(9,10))

[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C44H81O12P (832.5465)


PG(20:2(11Z,14Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:2(11Z,14Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 11Z,14Z-eicosadienoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:1(12Z)-2OH(9,10)/20:2(11Z,14Z))

[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C44H81O12P (832.5465)


PG(18:1(12Z)-2OH(9,10)/20:2(11Z,14Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:1(12Z)-2OH(9,10)/20:2(11Z,14Z)), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 11Z,14Z-eicosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-18:0/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-[(16-methylheptadecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C44H81O12P (832.5465)


PG(i-18:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-18:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:3(8Z,11Z,14Z)-2OH(5,6)/i-18:0)

[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-[(16-methylheptadecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C44H81O12P (832.5465)


PG(20:3(8Z,11Z,14Z)-2OH(5,6)/i-18:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:3(8Z,11Z,14Z)-2OH(5,6)/i-18:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PI(P-18:0/17:2(9Z,12Z))

1-(1Z-octadecenyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phospho-(1-myo-inositol)

C44H81O12P (832.5465)


   

PI O-35:3

1-(1Z-octadecenyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phospho-(1-myo-inositol)

C44H81O12P (832.5465)


   

PA(a-21:0/TXB2)

PA(a-21:0/TXB2)

C44H81O12P (832.5465)


   

PA(TXB2/a-21:0)

PA(TXB2/a-21:0)

C44H81O12P (832.5465)


   

PA(i-21:0/TXB2)

PA(i-21:0/TXB2)

C44H81O12P (832.5465)


   

PA(TXB2/i-21:0)

PA(TXB2/i-21:0)

C44H81O12P (832.5465)


   

PA(21:0/6 keto-PGF1alpha)

PA(21:0/6 keto-PGF1alpha)

C44H81O12P (832.5465)


   

PA(6 keto-PGF1alpha/21:0)

PA(6 keto-PGF1alpha/21:0)

C44H81O12P (832.5465)


   
   
   

PA(a-21:0/6 keto-PGF1alpha)

PA(a-21:0/6 keto-PGF1alpha)

C44H81O12P (832.5465)


   

PA(6 keto-PGF1alpha/a-21:0)

PA(6 keto-PGF1alpha/a-21:0)

C44H81O12P (832.5465)


   

PA(i-21:0/6 keto-PGF1alpha)

PA(i-21:0/6 keto-PGF1alpha)

C44H81O12P (832.5465)


   

PA(6 keto-PGF1alpha/i-21:0)

PA(6 keto-PGF1alpha/i-21:0)

C44H81O12P (832.5465)


   

PG(18:0/20:3(8Z,11Z,14Z)-2OH(5,6))

PG(18:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C44H81O12P (832.5465)


   

PG(20:3(8Z,11Z,14Z)-2OH(5,6)/18:0)

PG(20:3(8Z,11Z,14Z)-2OH(5,6)/18:0)

C44H81O12P (832.5465)


   

PG(i-18:0/20:3(8Z,11Z,14Z)-2OH(5,6))

PG(i-18:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C44H81O12P (832.5465)


   

PG(20:3(8Z,11Z,14Z)-2OH(5,6)/i-18:0)

PG(20:3(8Z,11Z,14Z)-2OH(5,6)/i-18:0)

C44H81O12P (832.5465)


   

PG(20:2(11Z,14Z)/18:1(12Z)-2OH(9,10))

PG(20:2(11Z,14Z)/18:1(12Z)-2OH(9,10))

C44H81O12P (832.5465)


   

PG(18:1(12Z)-2OH(9,10)/20:2(11Z,14Z))

PG(18:1(12Z)-2OH(9,10)/20:2(11Z,14Z))

C44H81O12P (832.5465)


   

Smgdg O-9:0_26:3

Smgdg O-9:0_26:3

C44H80O12S (832.537)


   

Smgdg O-26:3_9:0

Smgdg O-26:3_9:0

C44H80O12S (832.537)


   

Smgdg O-28:3_7:0

Smgdg O-28:3_7:0

C44H80O12S (832.537)


   

Dgdg O-22:2_7:0

Dgdg O-22:2_7:0

C44H80O14 (832.5548)


   

Dgdg O-26:2_3:0

Dgdg O-26:2_3:0

C44H80O14 (832.5548)


   

Dgdg O-24:2_5:0

Dgdg O-24:2_5:0

C44H80O14 (832.5548)


   

Dgdg O-8:0_21:2

Dgdg O-8:0_21:2

C44H80O14 (832.5548)


   

Dgdg O-21:2_8:0

Dgdg O-21:2_8:0

C44H80O14 (832.5548)


   

Dgdg O-9:0_20:2

Dgdg O-9:0_20:2

C44H80O14 (832.5548)


   

Dgdg O-20:2_9:0

Dgdg O-20:2_9:0

C44H80O14 (832.5548)


   

Smgdg O-19:1_16:2

Smgdg O-19:1_16:2

C44H80O12S (832.537)


   

Smgdg O-17:0_18:3

Smgdg O-17:0_18:3

C44H80O12S (832.537)


   

Smgdg O-13:1_22:2

Smgdg O-13:1_22:2

C44H80O12S (832.537)


   

Smgdg O-11:0_24:3

Smgdg O-11:0_24:3

C44H80O12S (832.537)


   

Smgdg O-18:2_17:1

Smgdg O-18:2_17:1

C44H80O12S (832.537)


   

Smgdg O-20:3_15:0

Smgdg O-20:3_15:0

C44H80O12S (832.537)


   

Smgdg O-18:3_17:0

Smgdg O-18:3_17:0

C44H80O12S (832.537)


   

Smgdg O-22:2_13:1

Smgdg O-22:2_13:1

C44H80O12S (832.537)


   

Smgdg O-17:2_18:1

Smgdg O-17:2_18:1

C44H80O12S (832.537)


   

Smgdg O-16:1_19:2

Smgdg O-16:1_19:2

C44H80O12S (832.537)


   

Smgdg O-16:3_19:0

Smgdg O-16:3_19:0

C44H80O12S (832.537)


   

Smgdg O-16:2_19:1

Smgdg O-16:2_19:1

C44H80O12S (832.537)


   

Smgdg O-15:0_20:3

Smgdg O-15:0_20:3

C44H80O12S (832.537)


   

Smgdg O-13:0_22:3

Smgdg O-13:0_22:3

C44H80O12S (832.537)


   

Smgdg O-22:3_13:0

Smgdg O-22:3_13:0

C44H80O12S (832.537)


   

Smgdg O-20:2_15:1

Smgdg O-20:2_15:1

C44H80O12S (832.537)


   

Smgdg O-19:2_16:1

Smgdg O-19:2_16:1

C44H80O12S (832.537)


   

Smgdg O-21:2_14:1

Smgdg O-21:2_14:1

C44H80O12S (832.537)


   

Smgdg O-24:3_11:0

Smgdg O-24:3_11:0

C44H80O12S (832.537)


   

Smgdg O-15:1_20:2

Smgdg O-15:1_20:2

C44H80O12S (832.537)


   

Smgdg O-18:1_17:2

Smgdg O-18:1_17:2

C44H80O12S (832.537)


   

Smgdg O-19:0_16:3

Smgdg O-19:0_16:3

C44H80O12S (832.537)


   

Smgdg O-14:1_21:2

Smgdg O-14:1_21:2

C44H80O12S (832.537)


   

Smgdg O-17:1_18:2

Smgdg O-17:1_18:2

C44H80O12S (832.537)


   

Dgdg O-16:1_13:1

Dgdg O-16:1_13:1

C44H80O14 (832.5548)


   

Dgdg O-13:0_16:2

Dgdg O-13:0_16:2

C44H80O14 (832.5548)


   

Dgdg O-14:1_15:1

Dgdg O-14:1_15:1

C44H80O14 (832.5548)


   

Dgdg O-12:0_17:2

Dgdg O-12:0_17:2

C44H80O14 (832.5548)


   

Dgdg O-18:2_11:0

Dgdg O-18:2_11:0

C44H80O14 (832.5548)


   

Dgdg O-11:0_18:2

Dgdg O-11:0_18:2

C44H80O14 (832.5548)


   

Dgdg O-13:1_16:1

Dgdg O-13:1_16:1

C44H80O14 (832.5548)


   

Dgdg O-10:0_19:2

Dgdg O-10:0_19:2

C44H80O14 (832.5548)


   

Dgdg O-16:2_13:0

Dgdg O-16:2_13:0

C44H80O14 (832.5548)


   

Dgdg O-19:2_10:0

Dgdg O-19:2_10:0

C44H80O14 (832.5548)


   

Dgdg O-15:1_14:1

Dgdg O-15:1_14:1

C44H80O14 (832.5548)


   

Dgdg O-17:2_12:0

Dgdg O-17:2_12:0

C44H80O14 (832.5548)


   

[1-heptadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-heptadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C44H81O12P (832.5465)


   

[1-[(Z)-heptadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[(Z)-heptadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C44H81O12P (832.5465)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecoxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecoxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C44H81O12P (832.5465)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C44H81O12P (832.5465)


   

[1-[(13Z,16Z)-docosa-13,16-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tridec-9-enoate

[1-[(13Z,16Z)-docosa-13,16-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tridec-9-enoate

C44H81O12P (832.5465)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecoxypropan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecoxypropan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

C44H81O12P (832.5465)


   

[1-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] tridecanoate

[1-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] tridecanoate

C44H81O12P (832.5465)


   

[1-[(11Z,14Z)-henicosa-11,14-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tetradec-9-enoate

[1-[(11Z,14Z)-henicosa-11,14-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tetradec-9-enoate

C44H81O12P (832.5465)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (Z)-heptadec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (Z)-heptadec-9-enoate

C44H81O12P (832.5465)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] nonadecanoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] nonadecanoate

C44H81O12P (832.5465)


   

[1-[(Z)-hexadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-[(Z)-hexadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C44H81O12P (832.5465)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C44H81O12P (832.5465)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (Z)-hexadec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (Z)-hexadec-9-enoate

C44H81O12P (832.5465)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonadecoxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonadecoxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C44H81O12P (832.5465)


   

[1-[(9Z,12Z)-heptadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate

[1-[(9Z,12Z)-heptadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate

C44H81O12P (832.5465)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentadecoxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentadecoxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C44H81O12P (832.5465)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] heptadecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] heptadecanoate

C44H81O12P (832.5465)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propan-2-yl] undecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propan-2-yl] undecanoate

C44H81O12P (832.5465)


   

[1-[(9Z,12Z)-hexadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-nonadec-9-enoate

[1-[(9Z,12Z)-hexadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-nonadec-9-enoate

C44H81O12P (832.5465)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] pentadecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] pentadecanoate

C44H81O12P (832.5465)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C44H81O12P (832.5465)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (Z)-pentadec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (Z)-pentadec-9-enoate

C44H81O12P (832.5465)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C44H81O12P (832.5465)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C44H81O12P (832.5465)


   
   

[3,4,5-trihydroxy-6-[2-[(Z)-icos-11-enoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[2-[(Z)-icos-11-enoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[6-[3-hexadecanoyloxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-hexadecanoyloxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[6-[2-[(Z)-henicos-11-enoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(Z)-henicos-11-enoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[6-[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[6-[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-nonadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-nonadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[6-[2-[(Z)-docos-13-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(Z)-docos-13-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[6-[3-heptadecanoyloxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-heptadecanoyloxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[6-[3-[(Z)-hexadec-9-enoyl]oxy-2-[(Z)-nonadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-[(Z)-hexadec-9-enoyl]oxy-2-[(Z)-nonadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[3,4,5-trihydroxy-6-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[6-[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[6-[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-octadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-octadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[6-[3-[(Z)-heptadec-9-enoyl]oxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-[(Z)-heptadec-9-enoyl]oxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-6-[(2S)-3-heptadecanoyloxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-heptadecanoyloxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-icos-13-enoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-icos-13-enoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[(E)-octadec-4-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[(E)-octadec-4-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[(E)-octadec-6-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[(E)-octadec-6-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-icos-11-enoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-icos-11-enoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-6-[(2S)-2-[(13E,16E)-docosa-13,16-dienoyl]oxy-3-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(13E,16E)-docosa-13,16-dienoyl]oxy-3-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[(E)-octadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[(E)-octadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-[(E)-octadec-6-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-[(E)-octadec-6-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-6-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-nonadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-nonadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[(E)-octadec-7-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[(E)-octadec-7-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-6-[(2S)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-octadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-octadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-[(E)-octadec-13-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-[(E)-octadec-13-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-6-[(2S)-2-heptadecanoyloxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-heptadecanoyloxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-6-[(2S)-3-heptadecanoyloxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-heptadecanoyloxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[(E)-octadec-13-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[(E)-octadec-13-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-6-[(2S)-3-heptadecanoyloxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-heptadecanoyloxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-6-[(2S)-3-heptadecanoyloxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-heptadecanoyloxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-icos-13-enoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-icos-13-enoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-6-[(2S)-2-heptadecanoyloxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-heptadecanoyloxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-6-[(2S)-2-heptadecanoyloxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-heptadecanoyloxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-6-[(2S)-2-heptadecanoyloxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-heptadecanoyloxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-octadec-17-enoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-octadec-17-enoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-[(E)-octadec-7-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-[(E)-octadec-7-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-[(E)-octadec-4-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-[(E)-octadec-4-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-6-[(2S)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-octadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-octadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-6-[(2S)-3-[(13E,16E)-docosa-13,16-dienoyl]oxy-2-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(13E,16E)-docosa-13,16-dienoyl]oxy-2-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E)-icosa-5,8-dienoyl]oxy-2-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E)-icosa-5,8-dienoyl]oxy-2-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

CID 134779069

CID 134779069

C44H80O12S (832.537)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-icos-11-enoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-icos-11-enoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-octadec-17-enoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-octadec-17-enoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

CID 134781181

CID 134781181

C44H80O12S (832.537)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-[(E)-octadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-[(E)-octadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C44H80O12S (832.537)


   
   

MGDG O-42:12

MGDG O-42:12

C51H76O9 (832.5489)


   
   
   
   
   

PG O-18:0/20:4;O3

PG O-18:0/20:4;O3

C44H81O12P (832.5465)


   
   

PG P-18:0/20:3;O3

PG P-18:0/20:3;O3

C44H81O12P (832.5465)


   

PG 18:0/20:3;O2

PG 18:0/20:3;O2

C44H81O12P (832.5465)


   

PG 20:1/18:2;O2

PG 20:1/18:2;O2

C44H81O12P (832.5465)


   

PG 20:2/18:1;O2

PG 20:2/18:1;O2

C44H81O12P (832.5465)


   
   
   
   
   
   

PI P-18:0/17:2 or PI O-18:1/17:2

PI P-18:0/17:2 or PI O-18:1/17:2

C44H81O12P (832.5465)


   
   

PI P-18:1/17:1 or PI O-18:2/17:1

PI P-18:1/17:1 or PI O-18:2/17:1

C44H81O12P (832.5465)


   
   

PI P-20:1/15:1 or PI O-20:2/15:1

PI P-20:1/15:1 or PI O-20:2/15:1

C44H81O12P (832.5465)


   
   

PI P-35:2 or PI O-35:3

PI P-35:2 or PI O-35:3

C44H81O12P (832.5465)