Exact Mass: 823.4664126

Exact Mass Matches: 823.4664126

Found 11 metabolites which its exact mass value is equals to given mass value 823.4664126, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

Solacauline

2-[(6-{[4,5-dihydroxy-6-({10,14,16,20-tetramethyl-22-azahexacyclo[12.10.0.0²,¹¹.0⁵,¹⁰.0¹⁵,²³.0¹⁷,²²]tetracos-4-en-7-yl}oxy)oxan-3-yl]oxy}-4,5-dihydroxyoxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C43H69NO14 (823.4717813999999)


Solacauline is found in alcoholic beverages. Solacauline is an alkaloid from potato species Solanum acaule, Solanum punae and Solanum schreiteri (Solanaceae Alkaloid from potato subspecies Solanum acaule, Solanum punae and Solanum schreiteri (Solanaceae). Solacauline is found in alcoholic beverages and potato.

   

PE(DiMe(9,3)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

(2-aminoethoxy)[(2R)-3-{[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyl]oxy}-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphinic acid

C43H70NO12P (823.463539)


PE(DiMe(9,3)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(DiMe(9,3)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 10,13-epoxy-11-methylhexadeca-10,12-dienoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/DiMe(9,3))

(2-aminoethoxy)[(2R)-2-{[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyl]oxy}-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphinic acid

C43H70NO12P (823.463539)


PE(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/DiMe(9,3)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/DiMe(9,3)), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 10,13-epoxy-11-methylhexadeca-10,12-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

acacic acid 3-O-alpha-L-arabinopyranosyl(1->6)-2-acetamido-2-deoxy-beta-D-glucopyranoside

acacic acid 3-O-alpha-L-arabinopyranosyl(1->6)-2-acetamido-2-deoxy-beta-D-glucopyranoside

C43H69NO14 (823.4717813999999)


   

Solacauline

2-[(6-{[4,5-dihydroxy-6-({10,14,16,20-tetramethyl-22-azahexacyclo[12.10.0.0^{2,11}.0^{5,10}.0^{15,23}.0^{17,22}]tetracos-4-en-7-yl}oxy)oxan-3-yl]oxy}-4,5-dihydroxyoxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C43H69NO14 (823.4717813999999)


   

C3a (70-77) trifluoroacetate salt

C3a (70-77) trifluoroacetate salt

C35H61N13O10 (823.4664126)


   

PE(DiMe(9,3)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PE(DiMe(9,3)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C43H70NO12P (823.463539)


   

PE(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/DiMe(9,3))

PE(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/DiMe(9,3))

C43H70NO12P (823.463539)


   

10-({4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl}oxy)-3,5-dihydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-({4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl}oxy)-3,5-dihydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C43H69NO14 (823.4717813999999)


   

(3s,4ar,5r,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2r,3r,4r,5s,6r)-4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-({[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-3,5-dihydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(3s,4ar,5r,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2r,3r,4r,5s,6r)-4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-({[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-3,5-dihydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C43H69NO14 (823.4717813999999)