Exact Mass: 815.5703

Exact Mass Matches: 815.5703

Found 194 metabolites which its exact mass value is equals to given mass value 815.5703, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

PS(14:1(9Z)/24:1(15Z))

(2S)-2-amino-3-{[hydroxy((2R)-2-[(15Z)-tetracos-15-enoyloxy]-3-[(9Z)-tetradec-9-enoyloxy]propoxy)phosphoryl]oxy}propanoic acid

C44H82NO10P (815.5676)


PS(14:1(9Z)/24:1(15Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(16:0/16:0), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of nervonic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(16:0/22:2(13Z,16Z))

(2S)-2-amino-3-({[(2R)-2-[(13Z,16Z)-docosa-13,16-dienoyloxy]-3-(hexadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C44H82NO10P (815.5676)


PS(16:0/22:2(13Z,16Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(16:0/22:2(13Z,16Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(16:1(9Z)/22:1(13Z))

(2S)-2-amino-3-({[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-[(9Z)-hexadec-9-enoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C44H82NO10P (815.5676)


PS(16:1(9Z)/22:1(13Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(16:1(9Z)/22:1(13Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of erucic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(18:0/20:2(11Z,14Z))

(2S)-2-amino-3-{[hydroxy((2R)-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]-3-(octadecanoyloxy)propoxy)phosphoryl]oxy}propanoic acid

C44H82NO10P (815.5676)


PS(18:0/20:2(11Z,14Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(18:0/20:2(11Z,14Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(18:1(11Z)/20:1(11Z))

(2S)-2-amino-3-{[hydroxy((2R)-2-[(11Z)-icos-11-enoyloxy]-3-[(11Z)-octadec-11-enoyloxy]propoxy)phosphoryl]oxy}propanoic acid

C44H82NO10P (815.5676)


PS(18:1(11Z)/20:1(11Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(18:1(11Z)/20:1(11Z)), in particular, consists of one chain of cis-vaccenic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(18:1(9Z)/20:1(11Z))

(2S)-2-amino-3-({hydroxy[(2R)-2-[(11Z)-icos-11-enoyloxy]-3-[(9Z)-octadec-9-enoyloxy]propoxy]phosphoryl}oxy)propanoic acid

C44H82NO10P (815.5676)


PS(18:1(9Z)/20:1(11Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(18:1(9Z)/20:1(11Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(18:2(9Z,12Z)/20:0)

(2S)-2-amino-3-({hydroxy[(2R)-2-(icosanoyloxy)-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)propanoic acid

C44H82NO10P (815.5676)


PS(18:2(9Z,12Z)/20:0) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(18:2(9Z,12Z)/20:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of arachidic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(20:0/18:2(9Z,12Z))

(2S)-2-amino-3-({hydroxy[(2R)-3-(icosanoyloxy)-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)propanoic acid

C44H82NO10P (815.5676)


PS(20:0/18:2(9Z,12Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(20:0/18:2(9Z,12Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of linoleic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(20:1(11Z)/18:1(11Z))

(2S)-2-amino-3-({hydroxy[(2R)-3-[(11Z)-icos-11-enoyloxy]-2-[(11Z)-octadec-11-enoyloxy]propoxy]phosphoryl}oxy)propanoic acid

C44H82NO10P (815.5676)


PS(20:1(11Z)/18:1(11Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(20:1(11Z)/18:1(11Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of cis-vaccenic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(20:1(11Z)/18:1(9Z))

(2S)-2-amino-3-{[hydroxy((2R)-3-[(11Z)-icos-11-enoyloxy]-2-[(9Z)-octadec-9-enoyloxy]propoxy)phosphoryl]oxy}propanoic acid

C44H82NO10P (815.5676)


PS(20:1(11Z)/18:1(9Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(20:1(11Z)/18:1(9Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of oleic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(20:2(11Z,14Z)/18:0)

(2S)-2-amino-3-{[hydroxy((2R)-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]-2-(octadecanoyloxy)propoxy)phosphoryl]oxy}propanoic acid

C44H82NO10P (815.5676)


PS(20:2(11Z,14Z)/18:0) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(20:2(11Z,14Z)/18:0), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of stearic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(22:1(13Z)/16:1(9Z))

(2S)-2-amino-3-({[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-[(9Z)-hexadec-9-enoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C44H82NO10P (815.5676)


PS(22:1(13Z)/16:1(9Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(22:1(13Z)/16:1(9Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(22:2(13Z,16Z)/16:0)

(2S)-2-amino-3-({[(2R)-3-[(13Z,16Z)-docosa-13,16-dienoyloxy]-2-(hexadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C44H82NO10P (815.5676)


PS(22:2(13Z,16Z)/16:0) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(22:2(13Z,16Z)/16:0), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(24:1(15Z)/14:1(9Z))

(2S)-2-amino-3-{[hydroxy((2R)-3-[(15Z)-tetracos-15-enoyloxy]-2-[(9Z)-tetradec-9-enoyloxy]propoxy)phosphoryl]oxy}propanoic acid

C44H82NO10P (815.5676)


PS(24:1(15Z)/14:1(9Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(24:1(15Z)/14:1(9Z)), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PC(16:0/20:3(8Z,11Z,14Z)-2OH(5,6))

(2-{[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-(hexadecanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C44H82NO10P (815.5676)


PC(16:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(16:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(8Z,11Z,14Z)-2OH(5,6)/16:0)

(2-{[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-(hexadecanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C44H82NO10P (815.5676)


PC(20:3(8Z,11Z,14Z)-2OH(5,6)/16:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(8Z,11Z,14Z)-2OH(5,6)/16:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:2(9Z,12Z)/18:1(12Z)-2OH(9,10))

(2-{[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C44H82NO10P (815.5676)


PC(18:2(9Z,12Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:2(9Z,12Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:1(12Z)-2OH(9,10)/18:2(9Z,12Z))

(2-{[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C44H82NO10P (815.5676)


PC(18:1(12Z)-2OH(9,10)/18:2(9Z,12Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:1(12Z)-2OH(9,10)/18:2(9Z,12Z)), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(P-16:0/PGF2alpha)

(2-{[(2R)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-(hexadec-1-en-1-yloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C44H82NO10P (815.5676)


PC(P-16:0/PGF2alpha) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-16:0/PGF2alpha), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(PGF2alpha/P-16:0)

(2-{[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-(hexadec-1-en-1-yloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C44H82NO10P (815.5676)


PC(PGF2alpha/P-16:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(PGF2alpha/P-16:0), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(P-16:0/PGE1)

(2-{[(2R)-3-(hexadec-1-en-1-yloxy)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propyl phosphono]oxy}ethyl)trimethylazanium

C44H82NO10P (815.5676)


PC(P-16:0/PGE1) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-16:0/PGE1), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(PGE1/P-16:0)

(2-{[(2R)-2-(hexadec-1-en-1-yloxy)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propyl phosphono]oxy}ethyl)trimethylazanium

C44H82NO10P (815.5676)


PC(PGE1/P-16:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(PGE1/P-16:0), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(P-16:0/PGD1)

(2-{[(2R)-3-(hexadec-1-en-1-yloxy)-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propyl phosphono]oxy}ethyl)trimethylazanium

C44H82NO10P (815.5676)


PC(P-16:0/PGD1) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-16:0/PGD1), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(PGD1/P-16:0)

(2-{[(2R)-2-(hexadec-1-en-1-yloxy)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propyl phosphono]oxy}ethyl)trimethylazanium

C44H82NO10P (815.5676)


PC(PGD1/P-16:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(PGD1/P-16:0), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(P-18:0/5-iso PGF2VI)

(2-{[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-(octadec-1-en-1-yloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C44H82NO10P (815.5676)


PC(P-18:0/5-iso PGF2VI) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-18:0/5-iso PGF2VI), in particular, consists of one chain of one 1Z-octadecenyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(5-iso PGF2VI/P-18:0)

(2-{[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-(octadec-1-en-1-yloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C44H82NO10P (815.5676)


PC(5-iso PGF2VI/P-18:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(5-iso PGF2VI/P-18:0), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 1Z-octadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

Phosphatidylserine 18:0-20:2

Phosphatidylserine 18:0-20:2

C44H82NO10P (815.5676)


   

Phosphatidylserine 18:1-20:1

Phosphatidylserine 18:1-20:1

C44H82NO10P (815.5676)


   

PS(16:0/22:2(13Z,16Z))

1-hexadecanoyl-2-(13Z,16Z-docosadienoyl)-glycero-3-phosphoserine

C44H82NO10P (815.5676)


   

PS(16:1(9Z)/22:1(11Z))

1-(9Z-hexadecenoyl)-2-(11Z-docosenoyl)-glycero-3-phosphoserine

C44H82NO10P (815.5676)


   

PS(17:2(9Z,12Z)/21:0)

1-(9Z,12Z-heptadecadienoyl)-2-heneicosanoyl-glycero-3-phosphoserine

C44H82NO10P (815.5676)


   

PS(18:2(9Z,12Z)/20:0)

1-(9Z,12Z-octadecadienoyl)-2-eicosanoyl-glycero-3-phosphoserine

C44H82NO10P (815.5676)


   

PS(19:1(9Z)/19:1(9Z))

1,2-di-(9Z-nonadecenoyl)-sn-glycero-3-phosphoserine

C44H82NO10P (815.5676)


   

PS(20:1(11Z)/18:1(9Z))

1-(11Z-eicosenoyl)-2-(9Z-octadecenoyl)-glycero-3-phosphoserine

C44H82NO10P (815.5676)


   

PS(20:2(11Z,14Z)/18:0)

1-(11Z,14Z-eicosadienoyl)-2-octadecanoyl-glycero-3-phosphoserine

C44H82NO10P (815.5676)


   

PS(21:0/17:2(9Z,12Z))

1-heneicosanoyl-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphoserine

C44H82NO10P (815.5676)


   

PS(22:1(11Z)/16:1(9Z))

1-(11Z-docosenoyl)-2-(9Z-hexadecenoyl)-glycero-3-phosphoserine

C44H82NO10P (815.5676)


   

PS(22:2(13Z,16Z)/16:0)

1-(13Z,16Z-docosadienoyl)-2-hexadecanoyl-glycero-3-phosphoserine

C44H82NO10P (815.5676)


   

PS(20:0/18:2(9Z,12Z))

1-eicosanoyl-2-(9Z,12Z-octadecadienoyl)-glycero-3-phosphoserine

C44H82NO10P (815.5676)


   

PS(18:1(9Z)/20:1(11Z))

1-(9Z-octadecenoyl)-2-(11Z-eicosenoyl)-glycero-3-phosphoserine

C44H82NO10P (815.5676)


   

PS(18:0/20:2(11Z,14Z))

1-octadecanoyl-2-(11Z,14Z-eicosadienoyl)-glycero-3-phosphoserine

C44H82NO10P (815.5676)


   

PS 38:2

1-heneicosanoyl-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphoserine

C44H82NO10P (815.5676)


   

PC(16:0/20:3(8Z,11Z,14Z)-2OH(5,6))

PC(16:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C44H82NO10P (815.5676)


   

PC(20:3(8Z,11Z,14Z)-2OH(5,6)/16:0)

PC(20:3(8Z,11Z,14Z)-2OH(5,6)/16:0)

C44H82NO10P (815.5676)


   

PC(18:2(9Z,12Z)/18:1(12Z)-2OH(9,10))

PC(18:2(9Z,12Z)/18:1(12Z)-2OH(9,10))

C44H82NO10P (815.5676)


   

PC(18:1(12Z)-2OH(9,10)/18:2(9Z,12Z))

PC(18:1(12Z)-2OH(9,10)/18:2(9Z,12Z))

C44H82NO10P (815.5676)


   

PC(P-16:0/PGF2alpha)

PC(P-16:0/PGF2alpha)

C44H82NO10P (815.5676)


   

PC(PGF2alpha/P-16:0)

PC(PGF2alpha/P-16:0)

C44H82NO10P (815.5676)


   
   
   
   
   

PC(P-18:0/5-iso PGF2VI)

PC(P-18:0/5-iso PGF2VI)

C44H82NO10P (815.5676)


   

PC(5-iso PGF2VI/P-18:0)

PC(5-iso PGF2VI/P-18:0)

C44H82NO10P (815.5676)


   

2-amino-3-[hydroxy-[2-[(Z)-icos-11-enoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(Z)-icos-11-enoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

2-amino-3-[2,3-bis[[(Z)-nonadec-9-enoyl]oxy]propoxy-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[2,3-bis[[(Z)-nonadec-9-enoyl]oxy]propoxy-hydroxyphosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

Lnaps 24:1/N-14:1

Lnaps 24:1/N-14:1

C44H82NO10P (815.5676)


   

Lnaps 20:2/N-18:0

Lnaps 20:2/N-18:0

C44H82NO10P (815.5676)


   

Lnaps 18:0/N-20:2

Lnaps 18:0/N-20:2

C44H82NO10P (815.5676)


   

Lnaps 22:2/N-16:0

Lnaps 22:2/N-16:0

C44H82NO10P (815.5676)


   

Lnaps 21:0/N-17:2

Lnaps 21:0/N-17:2

C44H82NO10P (815.5676)


   

Lnaps 19:2/N-19:0

Lnaps 19:2/N-19:0

C44H82NO10P (815.5676)


   

Lnaps 21:1/N-17:1

Lnaps 21:1/N-17:1

C44H82NO10P (815.5676)


   

Lnaps 17:0/N-21:2

Lnaps 17:0/N-21:2

C44H82NO10P (815.5676)


   

Lnaps 24:2/N-14:0

Lnaps 24:2/N-14:0

C44H82NO10P (815.5676)


   

Lnaps 22:1/N-16:1

Lnaps 22:1/N-16:1

C44H82NO10P (815.5676)


   

Lnaps 20:0/N-18:2

Lnaps 20:0/N-18:2

C44H82NO10P (815.5676)


   

Lnaps 18:2/N-20:0

Lnaps 18:2/N-20:0

C44H82NO10P (815.5676)


   

Lnaps 18:1/N-20:1

Lnaps 18:1/N-20:1

C44H82NO10P (815.5676)


   

Lnaps 26:2/N-12:0

Lnaps 26:2/N-12:0

C44H82NO10P (815.5676)


   

Lnaps 16:0/N-22:2

Lnaps 16:0/N-22:2

C44H82NO10P (815.5676)


   

Lnaps 12:0/N-26:2

Lnaps 12:0/N-26:2

C44H82NO10P (815.5676)


   

Lnaps 21:2/N-17:0

Lnaps 21:2/N-17:0

C44H82NO10P (815.5676)


   

Lnaps 14:1/N-24:1

Lnaps 14:1/N-24:1

C44H82NO10P (815.5676)


   

Lnaps 17:2/N-21:0

Lnaps 17:2/N-21:0

C44H82NO10P (815.5676)


   

Lnaps 19:1/N-19:1

Lnaps 19:1/N-19:1

C44H82NO10P (815.5676)


   

Lnaps 16:2/N-22:0

Lnaps 16:2/N-22:0

C44H82NO10P (815.5676)


   

Lnaps 17:1/N-21:1

Lnaps 17:1/N-21:1

C44H82NO10P (815.5676)


   

Lnaps 16:1/N-22:1

Lnaps 16:1/N-22:1

C44H82NO10P (815.5676)


   

Lnaps 14:0/N-24:2

Lnaps 14:0/N-24:2

C44H82NO10P (815.5676)


   

Lnaps 22:0/N-16:2

Lnaps 22:0/N-16:2

C44H82NO10P (815.5676)


   

Lnaps 20:1/N-18:1

Lnaps 20:1/N-18:1

C44H82NO10P (815.5676)


   

Lnaps 19:0/N-19:2

Lnaps 19:0/N-19:2

C44H82NO10P (815.5676)


   

2-[4-[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-12-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]ethanesulfonic acid

2-[4-[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-12-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]ethanesulfonic acid

C48H81NO7S (815.5733)


   
   

OxPC 36:4e+3O(2Cyc)

OxPC 36:4e+3O(2Cyc)

C44H82NO10P (815.5676)


   

[2-[(9Z,11E)-13-hydroperoxyoctadeca-9,11-dienoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,11E)-13-hydroperoxyoctadeca-9,11-dienoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H82NO10P (815.5676)


   

[2-[(5Z,8Z,14E)-11,12-dihydroxyicosa-5,8,14-trienoyl]oxy-3-hexadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(5Z,8Z,14E)-11,12-dihydroxyicosa-5,8,14-trienoyl]oxy-3-hexadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H82NO10P (815.5676)


   

2-amino-3-[hydroxy-[3-icosanoyloxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-icosanoyloxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

2-amino-3-[hydroxy-[2-[(Z)-tetracos-13-enoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(Z)-tetracos-13-enoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

2-amino-3-[[3-docosanoyloxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-docosanoyloxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

2-amino-3-[hydroxy-[2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxy-3-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxy-3-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

2-amino-3-[[3-henicosanoyloxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-henicosanoyloxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

2-amino-3-[[2-[(Z)-docos-13-enoyl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(Z)-docos-13-enoyl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

2-amino-3-[[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-heptadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-heptadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

2-amino-3-[hydroxy-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-nonadecanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-nonadecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

2-amino-3-[hydroxy-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-octadecanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-octadecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

2-amino-3-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-hexadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-hexadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

2-amino-3-[[2-[(Z)-henicos-11-enoyl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(Z)-henicos-11-enoyl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

2-amino-3-[hydroxy-[2-[(Z)-icos-4-enoyl]oxy-3-[(Z)-octadec-4-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(Z)-icos-4-enoyl]oxy-3-[(Z)-octadec-4-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

2-amino-3-[hydroxy-[2-[(4Z,7Z)-icosa-4,7-dienoyl]oxy-3-octadecanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(4Z,7Z)-icosa-4,7-dienoyl]oxy-3-octadecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

2-amino-3-[[3-dodecanoyloxy-2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-dodecanoyloxy-2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-icos-11-enoyl]oxy-3-octadec-17-enoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-icos-11-enoyl]oxy-3-octadec-17-enoyloxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-icos-11-enoyl]oxy-2-[(E)-octadec-6-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-icos-11-enoyl]oxy-2-[(E)-octadec-6-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2R)-2-amino-3-[[(2S)-3-[(E)-docos-13-enoyl]oxy-2-[(E)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2R)-2-amino-3-[[(2S)-3-[(E)-docos-13-enoyl]oxy-2-[(E)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-icos-11-enoyl]oxy-2-[(E)-octadec-4-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-icos-11-enoyl]oxy-2-[(E)-octadec-4-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-icos-13-enoyl]oxy-2-[(E)-octadec-6-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-icos-13-enoyl]oxy-2-[(E)-octadec-6-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2R)-2-amino-3-[[3-docosanoyloxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2R)-2-amino-3-[[3-docosanoyloxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2R)-2-amino-3-[[(2S)-3-[(13E,16E)-docosa-13,16-dienoyl]oxy-2-hexadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2R)-2-amino-3-[[(2S)-3-[(13E,16E)-docosa-13,16-dienoyl]oxy-2-hexadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

4-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H77NO7 (815.57)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-icos-13-enoyl]oxy-3-[(E)-octadec-6-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-icos-13-enoyl]oxy-3-[(E)-octadec-6-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-icos-13-enoyl]oxy-2-[(E)-octadec-13-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-icos-13-enoyl]oxy-2-[(E)-octadec-13-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-icos-11-enoyl]oxy-3-[(E)-octadec-13-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-icos-11-enoyl]oxy-3-[(E)-octadec-13-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[[(2R)-2-henicosanoyloxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2-henicosanoyloxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-icosanoyloxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-icosanoyloxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2S)-3-[(E)-tetracos-15-enoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-3-[(E)-tetracos-15-enoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-octadecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-octadecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-icos-11-enoyl]oxy-3-[(E)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-icos-11-enoyl]oxy-3-[(E)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-icos-11-enoyl]oxy-2-[(E)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-icos-11-enoyl]oxy-2-[(E)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-icos-13-enoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-icos-13-enoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-icos-13-enoyl]oxy-3-octadec-17-enoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-icos-13-enoyl]oxy-3-octadec-17-enoyloxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-icosanoyloxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-icosanoyloxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-icos-11-enoyl]oxy-3-[(E)-octadec-7-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-icos-11-enoyl]oxy-3-[(E)-octadec-7-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-icos-11-enoyl]oxy-2-octadec-17-enoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-icos-11-enoyl]oxy-2-octadec-17-enoyloxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2R)-2-amino-3-[[(2S)-3-henicosanoyloxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2R)-2-amino-3-[[(2S)-3-henicosanoyloxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-icos-13-enoyl]oxy-3-[(E)-octadec-7-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-icos-13-enoyl]oxy-3-[(E)-octadec-7-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-octadecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-octadecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-icos-13-enoyl]oxy-2-[(E)-octadec-4-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-icos-13-enoyl]oxy-2-[(E)-octadec-4-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[[(2S)-3-dodecanoyloxy-2-[(5E,9E)-hexacosa-5,9-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2S)-3-dodecanoyloxy-2-[(5E,9E)-hexacosa-5,9-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

4-[3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H77NO7 (815.57)


   

(2S)-2-amino-3-[[(2S)-2-[(E)-docos-13-enoyl]oxy-3-[(E)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2S)-2-[(E)-docos-13-enoyl]oxy-3-[(E)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-icosanoyloxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-icosanoyloxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

4-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H77NO7 (815.57)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-icosanoyloxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-icosanoyloxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2R)-2-amino-3-[[(2S)-3-[(E)-docos-13-enoyl]oxy-2-[(E)-hexadec-7-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2R)-2-amino-3-[[(2S)-3-[(E)-docos-13-enoyl]oxy-2-[(E)-hexadec-7-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-icos-11-enoyl]oxy-3-[(E)-octadec-4-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-icos-11-enoyl]oxy-3-[(E)-octadec-4-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-icos-11-enoyl]oxy-2-[(E)-octadec-7-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-icos-11-enoyl]oxy-2-[(E)-octadec-7-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-icos-11-enoyl]oxy-3-[(E)-octadec-6-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-icos-11-enoyl]oxy-3-[(E)-octadec-6-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

4-[2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H77NO7 (815.57)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-icos-13-enoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-icos-13-enoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

4-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H77NO7 (815.57)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-icos-13-enoyl]oxy-2-[(E)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-icos-13-enoyl]oxy-2-[(E)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-icos-13-enoyl]oxy-3-[(E)-octadec-13-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-icos-13-enoyl]oxy-3-[(E)-octadec-13-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-icos-13-enoyl]oxy-2-[(E)-octadec-7-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-icos-13-enoyl]oxy-2-[(E)-octadec-7-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-icosanoyloxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-icosanoyloxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-icosanoyloxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-icosanoyloxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-icos-11-enoyl]oxy-2-[(E)-octadec-13-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-icos-11-enoyl]oxy-2-[(E)-octadec-13-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-icosanoyloxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-icosanoyloxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

4-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H77NO7 (815.57)


   

4-[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H77NO7 (815.57)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-icos-13-enoyl]oxy-3-[(E)-octadec-4-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-icos-13-enoyl]oxy-3-[(E)-octadec-4-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-icos-13-enoyl]oxy-2-octadec-17-enoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-icos-13-enoyl]oxy-2-octadec-17-enoyloxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2S)-2-[(E)-tetracos-15-enoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-2-[(E)-tetracos-15-enoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

4-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H77NO7 (815.57)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-octadecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-octadecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-icos-13-enoyl]oxy-3-[(E)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-icos-13-enoyl]oxy-3-[(E)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-icosanoyloxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-icosanoyloxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[[(2S)-2-[(13E,16E)-docosa-13,16-dienoyl]oxy-3-hexadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2S)-2-[(13E,16E)-docosa-13,16-dienoyl]oxy-3-hexadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-icos-11-enoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-icos-11-enoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-icos-11-enoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-icos-11-enoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

4-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H77NO7 (815.57)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(5E,8E)-icosa-5,8-dienoyl]oxy-2-octadecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(5E,8E)-icosa-5,8-dienoyl]oxy-2-octadecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[[(2S)-2-[(E)-docos-13-enoyl]oxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2S)-2-[(E)-docos-13-enoyl]oxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

4-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H77NO7 (815.57)


   

2-[[(8E,12E,16E)-3,4-dihydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]octadeca-8,12,16-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(8E,12E,16E)-3,4-dihydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]octadeca-8,12,16-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C47H80N2O7P+ (815.5703)


   

1-(9Z,12Z-octadecadienoyl)-2-eicosanoyl-glycero-3-phosphoserine

1-(9Z,12Z-octadecadienoyl)-2-eicosanoyl-glycero-3-phosphoserine

C44H82NO10P (815.5676)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(Z)-icos-11-enoyl]oxy-3-[(Z)-octadec-11-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(Z)-icos-11-enoyl]oxy-3-[(Z)-octadec-11-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H82NO10P (815.5676)


   

phosphatidylserine 38:2

phosphatidylserine 38:2

C44H82NO10P (815.5676)


A 3-sn-phosphatidyl-L-serine in which the two acyl groups contain a total of 38 carbon atoms and 2 double bonds.

   

DGTS 41:11

DGTS 41:11

C51H77NO7 (815.57)


   

PC O-16:0/20:4;O3

PC O-16:0/20:4;O3

C44H82NO10P (815.5676)


   
   

PC P-16:0/20:3;O3

PC P-16:0/20:3;O3

C44H82NO10P (815.5676)