Exact Mass: 806.514

Exact Mass Matches: 806.514

Found 127 metabolites which its exact mass value is equals to given mass value 806.514, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

N-di-Demethyl roxithromycin

(3R,4S,6R,7R,9R,10E,11S,12R,13S,14R)-6-[(4-amino-3-hydroxy-6-methyloxan-2-yl)oxy]-14-ethyl-7,12,13-trihydroxy-4-[(4-methoxy-4,5,6-trimethyloxan-2-yl)oxy]-3,5,7,9,11,13-hexamethyl-10-(2,4,7-trioxa-1-azaoctan-1-ylidene)-1-oxacyclotetradecan-2-one

C40H74N2O14 (806.514)


N-di-Demethyl roxithromycin is a metabolite of roxithromycin. Roxithromycin is a semi-synthetic macrolide antibiotic. It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin is derived from erythromycin, containing the same 14-membered lactone ring. However, an N-oxime side chain is attached to the lactone ring. It is also currently undergoing clinical trials for the treatment of male-pattern hair loss. (Wikipedia)

   

PA(20:1(11Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-[(11Z)-icos-11-enoyloxy]propoxy]phosphonic acid

C45H75O10P (806.5098)


PA(20:1(11Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:1(11Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/20:1(11Z))

[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-[(11Z)-icos-11-enoyloxy]propoxy]phosphonic acid

C45H75O10P (806.5098)


PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/20:1(11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/20:1(11Z)), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:1(11Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-[(11Z)-icos-11-enoyloxy]propoxy]phosphonic acid

C45H75O10P (806.5098)


PA(20:1(11Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:1(11Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/20:1(11Z))

[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-[(11Z)-icos-11-enoyloxy]propoxy]phosphonic acid

C45H75O10P (806.5098)


PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/20:1(11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/20:1(11Z)), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:2(13Z,16Z)/PGJ2)

[(2R)-3-[(13Z,16Z)-docosa-13,16-dienoyloxy]-2-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}propoxy]phosphonic acid

C45H75O10P (806.5098)


PA(22:2(13Z,16Z)/PGJ2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:2(13Z,16Z)/PGJ2), in particular, consists of one chain of one 13Z,16Z-docosadienoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGJ2/22:2(13Z,16Z))

[(2R)-2-[(13Z,16Z)-docosa-13,16-dienoyloxy]-3-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}propoxy]phosphonic acid

C45H75O10P (806.5098)


PA(PGJ2/22:2(13Z,16Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGJ2/22:2(13Z,16Z)), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of 13Z,16Z-docosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:4(7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]propoxy]phosphonic acid

C45H75O10P (806.5098)


PA(22:4(7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:4(7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/22:4(7Z,10Z,13Z,16Z))

[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]propoxy]phosphonic acid

C45H75O10P (806.5098)


PA(20:3(8Z,11Z,14Z)-2OH(5,6)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-2OH(5,6)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

21-Hydroxyoligomycin A

21-Hydroxyoligomycin A

C45H74O12 (806.518)


   

2,11-Bis(geranylgeranyl)gomphilactone

2,11-Bis(geranylgeranyl)gomphilactone

C52H70O7 (806.5121)


   

Bovilacton-4,4|bovilactone-4,4

Bovilacton-4,4|bovilactone-4,4

C52H70O7 (806.5121)


   

tridentorubin

tridentorubin

C52H70O7 (806.5121)


   

PG(17:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

1-(9Z-heptadecenoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-glycero-3-phospho-(1-sn-glycerol)

C45H75O10P (806.5098)


   

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/17:1(9Z))

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-(9Z-heptadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C45H75O10P (806.5098)


   

PG 39:7

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-(9Z-heptadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C45H75O10P (806.5098)


   

PA(22:2(13Z,16Z)/PGJ2)

PA(22:2(13Z,16Z)/PGJ2)

C45H75O10P (806.5098)


   

PA(PGJ2/22:2(13Z,16Z))

PA(PGJ2/22:2(13Z,16Z))

C45H75O10P (806.5098)


   

PA(20:1(11Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PA(20:1(11Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C45H75O10P (806.5098)


   

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/20:1(11Z))

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/20:1(11Z))

C45H75O10P (806.5098)


   

PA(20:1(11Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PA(20:1(11Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C45H75O10P (806.5098)


   

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/20:1(11Z))

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/20:1(11Z))

C45H75O10P (806.5098)


   

PA(22:4(7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

PA(22:4(7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

C45H75O10P (806.5098)


   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/22:4(7Z,10Z,13Z,16Z))

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/22:4(7Z,10Z,13Z,16Z))

C45H75O10P (806.5098)


   

Smgdg O-26:2_7:0

Smgdg O-26:2_7:0

C42H78O12S (806.5214)


   

Smgdg O-28:2_5:0

Smgdg O-28:2_5:0

C42H78O12S (806.5214)


   

Smgdg O-9:0_24:2

Smgdg O-9:0_24:2

C42H78O12S (806.5214)


   

Smgdg O-24:2_9:0

Smgdg O-24:2_9:0

C42H78O12S (806.5214)


   

Smgdg O-17:0_16:2

Smgdg O-17:0_16:2

C42H78O12S (806.5214)


   

Smgdg O-13:0_20:2

Smgdg O-13:0_20:2

C42H78O12S (806.5214)


   

Smgdg O-17:2_16:0

Smgdg O-17:2_16:0

C42H78O12S (806.5214)


   

Smgdg O-15:0_18:2

Smgdg O-15:0_18:2

C42H78O12S (806.5214)


   

Smgdg O-18:1_15:1

Smgdg O-18:1_15:1

C42H78O12S (806.5214)


   

Smgdg O-18:2_15:0

Smgdg O-18:2_15:0

C42H78O12S (806.5214)


   

Smgdg O-14:0_19:2

Smgdg O-14:0_19:2

C42H78O12S (806.5214)


   

Smgdg O-19:2_14:0

Smgdg O-19:2_14:0

C42H78O12S (806.5214)


   

Smgdg O-20:1_13:1

Smgdg O-20:1_13:1

C42H78O12S (806.5214)


   

Smgdg O-19:1_14:1

Smgdg O-19:1_14:1

C42H78O12S (806.5214)


   

Smgdg O-16:1_17:1

Smgdg O-16:1_17:1

C42H78O12S (806.5214)


   

Smgdg O-16:0_17:2

Smgdg O-16:0_17:2

C42H78O12S (806.5214)


   

Smgdg O-13:1_20:1

Smgdg O-13:1_20:1

C42H78O12S (806.5214)


   

Smgdg O-15:1_18:1

Smgdg O-15:1_18:1

C42H78O12S (806.5214)


   

Smgdg O-14:1_19:1

Smgdg O-14:1_19:1

C42H78O12S (806.5214)


   

Smgdg O-17:1_16:1

Smgdg O-17:1_16:1

C42H78O12S (806.5214)


   

Smgdg O-21:2_12:0

Smgdg O-21:2_12:0

C42H78O12S (806.5214)


   

Smgdg O-22:2_11:0

Smgdg O-22:2_11:0

C42H78O12S (806.5214)


   

Smgdg O-11:0_22:2

Smgdg O-11:0_22:2

C42H78O12S (806.5214)


   

Smgdg O-20:2_13:0

Smgdg O-20:2_13:0

C42H78O12S (806.5214)


   

Smgdg O-12:0_21:2

Smgdg O-12:0_21:2

C42H78O12S (806.5214)


   

Smgdg O-16:2_17:0

Smgdg O-16:2_17:0

C42H78O12S (806.5214)


   

[3,4,5-trihydroxy-6-[2-[(Z)-octadec-9-enoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[2-[(Z)-octadec-9-enoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[6-[2-[(Z)-heptadec-9-enoyl]oxy-3-hexadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(Z)-heptadec-9-enoyl]oxy-3-hexadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[3,4,5-trihydroxy-6-[2-[(Z)-icos-11-enoyl]oxy-3-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[2-[(Z)-icos-11-enoyl]oxy-3-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[3,4,5-trihydroxy-6-[3-nonadecanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[3-nonadecanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[6-[3-heptadecanoyloxy-2-[(Z)-hexadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-heptadecanoyloxy-2-[(Z)-hexadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[6-[3-dodecanoyloxy-2-[(Z)-henicos-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-dodecanoyloxy-2-[(Z)-henicos-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[3,4,5-trihydroxy-6-[3-icosanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[3-icosanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[3,4,5-trihydroxy-6-[3-octadecanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[3-octadecanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[3,4,5-trihydroxy-6-[2-[(Z)-nonadec-9-enoyl]oxy-3-tetradecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[2-[(Z)-nonadec-9-enoyl]oxy-3-tetradecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[1-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C45H75O10P (806.5098)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C45H75O10P (806.5098)


   

[1-[[2-[(Z)-heptadec-9-enoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[[2-[(Z)-heptadec-9-enoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C45H75O10P (806.5098)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C45H75O10P (806.5098)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C45H75O10P (806.5098)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (11Z,14Z)-henicosa-11,14-dienoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (11Z,14Z)-henicosa-11,14-dienoate

C45H75O10P (806.5098)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C45H75O10P (806.5098)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C45H75O10P (806.5098)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-octadec-6-enoyl]oxy-2-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-octadec-6-enoyl]oxy-2-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-nonadecanoyloxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-nonadecanoyloxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-octadec-9-enoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-octadec-9-enoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C45H75O10P (806.5098)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-octadec-17-enoyloxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-octadec-17-enoyloxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-octadec-7-enoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-octadec-7-enoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-hexadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-hexadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-heptadec-9-enoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-heptadec-9-enoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C45H75O10P (806.5098)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-octadec-17-enoyloxy-2-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-octadec-17-enoyloxy-2-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-octadec-6-enoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-octadec-6-enoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-icos-11-enoyl]oxy-3-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-icos-11-enoyl]oxy-3-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-hexadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-hexadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-icos-13-enoyl]oxy-2-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-icos-13-enoyl]oxy-2-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-icos-11-enoyl]oxy-2-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-icos-11-enoyl]oxy-2-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-nonadecanoyloxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-nonadecanoyloxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-octadec-13-enoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-octadec-13-enoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-octadec-13-enoyl]oxy-2-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-octadec-13-enoyl]oxy-2-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-octadec-11-enoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-octadec-11-enoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-docos-13-enoyl]oxy-2-undecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-docos-13-enoyl]oxy-2-undecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-octadec-4-enoyl]oxy-2-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-octadec-4-enoyl]oxy-2-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-docos-13-enoyl]oxy-3-undecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-docos-13-enoyl]oxy-3-undecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[(2S,3S,6S)-6-[(2S)-3-heptadecanoyloxy-2-[(E)-hexadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-heptadecanoyloxy-2-[(E)-hexadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C45H75O10P (806.5098)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-octadec-7-enoyl]oxy-2-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-octadec-7-enoyl]oxy-2-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[(2S,3S,6S)-6-[(2S)-2-heptadecanoyloxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-heptadecanoyloxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (14E,17E,20E)-tricosa-14,17,20-trienoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (14E,17E,20E)-tricosa-14,17,20-trienoate

C45H75O10P (806.5098)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-octadecanoyloxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-octadecanoyloxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-octadec-4-enoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-octadec-4-enoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-icos-13-enoyl]oxy-3-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-icos-13-enoyl]oxy-3-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C45H75O10P (806.5098)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-octadec-11-enoyl]oxy-2-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-octadec-11-enoyl]oxy-2-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoate

C45H75O10P (806.5098)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (14E,16E)-tricosa-14,16-dienoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (14E,16E)-tricosa-14,16-dienoate

C45H75O10P (806.5098)


   

[(2S,3S,6S)-6-[(2S)-2-heptadecanoyloxy-3-[(E)-hexadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-heptadecanoyloxy-3-[(E)-hexadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[(2S,3S,6S)-6-[(2S)-3-heptadecanoyloxy-2-[(E)-hexadec-7-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-heptadecanoyloxy-2-[(E)-hexadec-7-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-octadecanoyloxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-octadecanoyloxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C45H75O10P (806.5098)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoate

C45H75O10P (806.5098)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-octadec-9-enoyl]oxy-2-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-octadec-9-enoyl]oxy-2-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C42H78O12S (806.5214)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C45H75O10P (806.5098)


   

N-di-Demethyl roxithromycin

N-di-Demethyl roxithromycin

C40H74N2O14 (806.514)


   
   
   

DGGA 36:5;O

DGGA 36:5;O

C45H74O12 (806.518)


   

PA 20:1/22:6;O2

PA 20:1/22:6;O2

C45H75O10P (806.5098)


   

PA 20:2/22:5;O2

PA 20:2/22:5;O2

C45H75O10P (806.5098)


   

PA 22:1/20:6;O2

PA 22:1/20:6;O2

C45H75O10P (806.5098)


   

PA 22:2/20:5;O2

PA 22:2/20:5;O2

C45H75O10P (806.5098)


   

PA 22:4/20:3;O2

PA 22:4/20:3;O2

C45H75O10P (806.5098)


   
   
   
   
   

(4e,5's,6s,6's,7r,8s,10r,11r,12s,14r,15s,16r,18e,20e,22s,28s)-22-ethyl-7,11,14,15,23-pentahydroxy-6'-[(2r)-2-hydroxypropyl]-5',6,8,10,12,14,15,16,28-nonamethyl-2,26-dioxaspiro[bicyclo[23.3.1]nonacosane-27,2'-oxane]-4,18,20-triene-3,9,13-trione

(4e,5's,6s,6's,7r,8s,10r,11r,12s,14r,15s,16r,18e,20e,22s,28s)-22-ethyl-7,11,14,15,23-pentahydroxy-6'-[(2r)-2-hydroxypropyl]-5',6,8,10,12,14,15,16,28-nonamethyl-2,26-dioxaspiro[bicyclo[23.3.1]nonacosane-27,2'-oxane]-4,18,20-triene-3,9,13-trione

C45H74O12 (806.518)


   

21-hydroxy-oligomycin

21-hydroxy-oligomycin

C45H74O12 (806.518)


   

21,25,26-trihydroxy-4,8,12,16,16-pentamethyl-27-(3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl)-17,22-dioxapentacyclo[16.10.1.0¹,²¹.0¹⁵,¹⁹.0²³,²⁸]nonacosa-3,7,11,18,23(28),24,26-heptaene-20,29-dione

21,25,26-trihydroxy-4,8,12,16,16-pentamethyl-27-(3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl)-17,22-dioxapentacyclo[16.10.1.0¹,²¹.0¹⁵,¹⁹.0²³,²⁸]nonacosa-3,7,11,18,23(28),24,26-heptaene-20,29-dione

C52H70O7 (806.5121)


   

5,6-dihydroxy-3-[(2e)-3-hydroxy-5-oxo-4-[(2e,6e,10e)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl]furan-2-ylidene]-7-[(2e,6e,10e)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl]-1-benzofuran-2-one

5,6-dihydroxy-3-[(2e)-3-hydroxy-5-oxo-4-[(2e,6e,10e)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl]furan-2-ylidene]-7-[(2e,6e,10e)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl]-1-benzofuran-2-one

C52H70O7 (806.5121)


   

22-ethyl-7,11,14,15,23-pentahydroxy-6'-(2-hydroxypropyl)-5',6,8,10,12,14,16,28,29-nonamethyl-2,26-dioxaspiro[bicyclo[23.3.1]nonacosane-27,2'-oxane]-4,18,20-triene-3,9,13-trione

22-ethyl-7,11,14,15,23-pentahydroxy-6'-(2-hydroxypropyl)-5',6,8,10,12,14,16,28,29-nonamethyl-2,26-dioxaspiro[bicyclo[23.3.1]nonacosane-27,2'-oxane]-4,18,20-triene-3,9,13-trione

C45H74O12 (806.518)


   

5,6-dihydroxy-3-[3-hydroxy-5-oxo-4-(3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl)furan-2-ylidene]-7-(3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl)-1-benzofuran-2-one

5,6-dihydroxy-3-[3-hydroxy-5-oxo-4-(3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl)furan-2-ylidene]-7-(3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl)-1-benzofuran-2-one

C52H70O7 (806.5121)


   

(1s,3e,7e,11e,15r,21s)-21,25,26-trihydroxy-4,8,12,16,16-pentamethyl-27-[(2e,6e,10e)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl]-17,22-dioxapentacyclo[16.10.1.0¹,²¹.0¹⁵,¹⁹.0²³,²⁸]nonacosa-3,7,11,18,23(28),24,26-heptaene-20,29-dione

(1s,3e,7e,11e,15r,21s)-21,25,26-trihydroxy-4,8,12,16,16-pentamethyl-27-[(2e,6e,10e)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl]-17,22-dioxapentacyclo[16.10.1.0¹,²¹.0¹⁵,¹⁹.0²³,²⁸]nonacosa-3,7,11,18,23(28),24,26-heptaene-20,29-dione

C52H70O7 (806.5121)