Exact Mass: 794.6212772
Exact Mass Matches: 794.6212772
Found 9 metabolites which its exact mass value is equals to given mass value 794.6212772
,
within given mass tolerance error 8.192E-13 dalton. Try search metabolite list with more accurate mass tolerance error
1.6384E-13 dalton.
Coenzyme Q9
Coenzyme Q9 (CoQ9) is a normal constituent of human plasma. CoQ9 in human plasma may originate as a product of incomplete CoQ10 biosynthesis or from the diet. The estimated dietary CoQ9 intake is 0 to 1.3 umol/day, primarily from cereals and fats, but this is unreliable because many food items contain levels below the detection limit. Plasma CoQ9 increases after supplementation with CoQ10, and CoQ9 and CoQ10 are significantly correlated. (PMID: 17405953). D020011 - Protective Agents > D000975 - Antioxidants Coenzyme Q9 (Ubiquinone Q9), the major form of ubiquinone in rodents, is an amphipathic molecular component of the electron transport chain that functions as an endogenous antioxidant. Coenzyme Q9 attenuates the diabetes-induced decreases in antioxidant defense mechanisms. Coenzyme Q9 improves left ventricular performance and reduces myocardial infarct size and cardiomyocyte apoptosis[1][2]. Coenzyme Q9 (Ubiquinone Q9), the major form of ubiquinone in rodents, is an amphipathic molecular component of the electron transport chain that functions as an endogenous antioxidant. Coenzyme Q9 attenuates the diabetes-induced decreases in antioxidant defense mechanisms. Coenzyme Q9 improves left ventricular performance and reduces myocardial infarct size and cardiomyocyte apoptosis[1][2].
Ubiquinone Q9;CoQ9;Ubiquinone 9
Coenzyme Q9
D020011 - Protective Agents > D000975 - Antioxidants Coenzyme Q9 (Ubiquinone Q9), the major form of ubiquinone in rodents, is an amphipathic molecular component of the electron transport chain that functions as an endogenous antioxidant. Coenzyme Q9 attenuates the diabetes-induced decreases in antioxidant defense mechanisms. Coenzyme Q9 improves left ventricular performance and reduces myocardial infarct size and cardiomyocyte apoptosis[1][2]. Coenzyme Q9 (Ubiquinone Q9), the major form of ubiquinone in rodents, is an amphipathic molecular component of the electron transport chain that functions as an endogenous antioxidant. Coenzyme Q9 attenuates the diabetes-induced decreases in antioxidant defense mechanisms. Coenzyme Q9 improves left ventricular performance and reduces myocardial infarct size and cardiomyocyte apoptosis[1][2].
ubiquinone-9
Coenzyme Q9 (CoQ9) is a normal constituent of human plasma. CoQ9 in human plasma may originate as a product of incomplete CoQ10 biosynthesis or from the diet. The estimated dietary CoQ9 intake is 0 to 1.3 umol/day, primarily from cereals and fats, but this is unreliable because many food items contain levels below the detection limit. Plasma CoQ9 increases after supplementation with CoQ10, and CoQ9 and CoQ10 are significantly correlated. (PMID: 17405953). Ubiquinone 9 is found in safflower. Coenzyme Q9 (Ubiquinone Q9), the major form of ubiquinone in rodents, is an amphipathic molecular component of the electron transport chain that functions as an endogenous antioxidant. Coenzyme Q9 attenuates the diabetes-induced decreases in antioxidant defense mechanisms. Coenzyme Q9 improves left ventricular performance and reduces myocardial infarct size and cardiomyocyte apoptosis[1][2]. Coenzyme Q9 (Ubiquinone Q9), the major form of ubiquinone in rodents, is an amphipathic molecular component of the electron transport chain that functions as an endogenous antioxidant. Coenzyme Q9 attenuates the diabetes-induced decreases in antioxidant defense mechanisms. Coenzyme Q9 improves left ventricular performance and reduces myocardial infarct size and cardiomyocyte apoptosis[1][2].
Co(0:0)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved