Exact Mass: 790.4632

Exact Mass Matches: 790.4632

Found 82 metabolites which its exact mass value is equals to given mass value 790.4632, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

PG(16:1(9Z)/5-iso PGF2VI)

[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-[(9Z)-hexadec-9-enoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C40H71O13P (790.4632)


PG(16:1(9Z)/5-iso PGF2VI) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(16:1(9Z)/5-iso PGF2VI), in particular, consists of one chain of one 9Z-hexadecenoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(5-iso PGF2VI/16:1(9Z))

[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-[(9Z)-hexadec-9-enoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C40H71O13P (790.4632)


PG(5-iso PGF2VI/16:1(9Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(5-iso PGF2VI/16:1(9Z)), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 9Z-hexadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-14:0/PGE2)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(12-methyltridecanoyl)oxy]propoxy]phosphinic acid

C40H71O13P (790.4632)


PG(i-14:0/PGE2) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-14:0/PGE2), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGE2/i-14:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(12-methyltridecanoyl)oxy]propoxy]phosphinic acid

C40H71O13P (790.4632)


PG(PGE2/i-14:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGE2/i-14:0), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-14:0/PGD2)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(12-methyltridecanoyl)oxy]propoxy]phosphinic acid

C40H71O13P (790.4632)


PG(i-14:0/PGD2) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-14:0/PGD2), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGD2/i-14:0)

PG(PGD2/i-14:0)

C40H71O13P (790.4632)


PG(PGD2/i-14:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGD2/i-14:0), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-14:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(12-methyltridecanoyl)oxy]-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphinic acid

C40H71O13P (790.4632)


PG(i-14:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-14:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-14:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(12-methyltridecanoyl)oxy]-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphinic acid

C40H71O13P (790.4632)


PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-14:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-14:0), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

Enteridinine B

Enteridinine B

C40H70O15 (790.4714)


   
   
   

culcitoside C2

culcitoside C2

C40H70O15 (790.4714)


   

PI(13:0/18:3(6Z,9Z,12Z))

1-tridecanoyl-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phospho-(1-myo-inositol)

C40H71O13P (790.4632)


   

PI(13:0/18:3(9Z,12Z,15Z))

1-tridecanoyl-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phospho-(1-myo-inositol)

C40H71O13P (790.4632)


   

PI(14:1(9Z)/17:2(9Z,12Z))

1-(9Z-tetradecenoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phospho-(1-myo-inositol)

C40H71O13P (790.4632)


   

PI(17:2(9Z,12Z)/14:1(9Z))

1-(9Z,12Z-heptadecadienoyl)-2-(9Z-tetradecenoyl)-glycero-3-phospho-(1-myo-inositol)

C40H71O13P (790.4632)


   

PI(18:3(6Z,9Z,12Z)/13:0)

1-(6Z,9Z,12Z-octadecatrienoyl)-2-tridecanoyl-glycero-3-phospho-(1-myo-inositol)

C40H71O13P (790.4632)


   

PI(18:3(9Z,12Z,15Z)/13:0)

1-(9Z,12Z,15Z-octadecatrienoyl)-2-tridecanoyl-glycero-3-phospho-(1-myo-inositol)

C40H71O13P (790.4632)


   

PI 31:3

1-(9Z,12Z-heptadecadienoyl)-2-(9Z-tetradecenoyl)-glycero-3-phospho-(1-myo-inositol)

C40H71O13P (790.4632)


   

PG(i-14:0/PGE2)

PG(i-14:0/PGE2)

C40H71O13P (790.4632)


   

PG(PGE2/i-14:0)

PG(PGE2/i-14:0)

C40H71O13P (790.4632)


   

PG(i-14:0/PGD2)

PG(i-14:0/PGD2)

C40H71O13P (790.4632)


   

PG(PGD2/i-14:0)

PG(PGD2/i-14:0)

C40H71O13P (790.4632)


   

PG(16:1(9Z)/5-iso PGF2VI)

PG(16:1(9Z)/5-iso PGF2VI)

C40H71O13P (790.4632)


   

PG(5-iso PGF2VI/16:1(9Z))

PG(5-iso PGF2VI/16:1(9Z))

C40H71O13P (790.4632)


   

PG(i-14:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PG(i-14:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C40H71O13P (790.4632)


   

PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-14:0)

PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-14:0)

C40H71O13P (790.4632)


   

1,2-di[(4Z,7Z,10Z,13Z,16Z,19Z)-docosahexaenoyl]-sn-glycero-3-phosphate(2-)

1,2-di[(4Z,7Z,10Z,13Z,16Z,19Z)-docosahexaenoyl]-sn-glycero-3-phosphate(2-)

C47H67O8P-2 (790.4573)


   

[1-octanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-octanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C40H70O15 (790.4714)


   

[1-propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C40H70O15 (790.4714)


   

[1-hexanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-hexanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C40H70O15 (790.4714)


   

[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C40H70O15 (790.4714)


   

[1-pentanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-pentanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C40H70O15 (790.4714)


   

[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C40H70O15 (790.4714)


   

[1-butanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-butanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C40H70O15 (790.4714)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C40H71O13P (790.4632)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C40H71O13P (790.4632)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C40H71O13P (790.4632)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C40H71O13P (790.4632)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C40H71O13P (790.4632)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C40H71O13P (790.4632)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonanoyloxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonanoyloxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C40H71O13P (790.4632)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoate

C47H66O10 (790.4656)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-undecanoyloxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-undecanoyloxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

C40H71O13P (790.4632)


   

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (9E,12E)-heptadeca-9,12-dienoate

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (9E,12E)-heptadeca-9,12-dienoate

C40H71O13P (790.4632)


   

[1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

[1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

C40H71O13P (790.4632)


   

[1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

[1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

C40H71O13P (790.4632)


   

[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

C40H71O13P (790.4632)


   

[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

C40H71O13P (790.4632)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-undecanoyloxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-undecanoyloxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C40H71O13P (790.4632)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C40H71O13P (790.4632)


   

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tridecanoyloxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tridecanoyloxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C40H71O13P (790.4632)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C40H71O13P (790.4632)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (9E,12E)-heptadeca-9,12-dienoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (9E,12E)-heptadeca-9,12-dienoate

C40H71O13P (790.4632)


   

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tridecanoyloxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tridecanoyloxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C40H71O13P (790.4632)


   

1,2-di[(4Z,7Z,10Z,13Z,16Z,19Z)-docosahexaenoyl]-sn-glycero-3-phosphate(2-)

1,2-di[(4Z,7Z,10Z,13Z,16Z,19Z)-docosahexaenoyl]-sn-glycero-3-phosphate(2-)

C47H67O8P (790.4573)


A 1,2-diacyl-sn-glycero-3-phosphate(2-) obtained by deprotonation of the phosphate OH groups of 1,2-di[(4Z,7Z,10Z,13Z,16Z,19Z)]-docosahexaenoyl-sn-glycero-3-phosphate; major species at pH 7.3.

   

DGDG O-25:3;O

DGDG O-25:3;O

C40H70O15 (790.4714)


   
   
   

PG 14:0/20:4;O3

PG 14:0/20:4;O3

C40H71O13P (790.4632)


   

PG 14:1/20:3;O3

PG 14:1/20:3;O3

C40H71O13P (790.4632)


   

PG 22:1/12:3;O3

PG 22:1/12:3;O3

C40H71O13P (790.4632)


   

PG 22:2/12:2;O3

PG 22:2/12:2;O3

C40H71O13P (790.4632)


   
   
   

PI P-18:0/13:3;O

PI P-18:0/13:3;O

C40H71O13P (790.4632)


   

PI P-20:1/11:2;O

PI P-20:1/11:2;O

C40H71O13P (790.4632)


   
   
   
   

(1r,2r,3s,3as,3bs,5s,5as,6r,7s,9as,9br,11ar)-1-[(2r,5r)-5-({[(2r,3r,4s,5s)-4-hydroxy-3-{[(2s,3r,4s,5r)-4-hydroxy-3,5-dimethoxyoxan-2-yl]oxy}-5-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-2,3,3b,5,6,7-hexol

(1r,2r,3s,3as,3bs,5s,5as,6r,7s,9as,9br,11ar)-1-[(2r,5r)-5-({[(2r,3r,4s,5s)-4-hydroxy-3-{[(2s,3r,4s,5r)-4-hydroxy-3,5-dimethoxyoxan-2-yl]oxy}-5-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-2,3,3b,5,6,7-hexol

C40H70O15 (790.4714)


   

(2s,4s,5r,6r)-5-{[(2s,5s,6s)-5-{[(2r,4s,5s,6s)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4-hydroxy-6-methyloxan-2-yl (2s)-2-[(2s,3s,4r,5s,6r,8s,9s,10r,11r)-4,10-dihydroxy-8-[(2r,3r)-3-hydroxypentan-2-yl]-3,5,9,11-tetramethyl-1,7-dioxaspiro[5.5]undecan-2-yl]propanoate

(2s,4s,5r,6r)-5-{[(2s,5s,6s)-5-{[(2r,4s,5s,6s)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4-hydroxy-6-methyloxan-2-yl (2s)-2-[(2s,3s,4r,5s,6r,8s,9s,10r,11r)-4,10-dihydroxy-8-[(2r,3r)-3-hydroxypentan-2-yl]-3,5,9,11-tetramethyl-1,7-dioxaspiro[5.5]undecan-2-yl]propanoate

C40H70O15 (790.4714)


   

(7e)-8-[(4z,6z,17e,27e,31e)-22,26-dihydroxy-21,40-dimethyl-3-oxo-2,11,15,35,39-pentaoxapentacyclo[32.2.2.1¹²,¹⁶.1²⁰,²⁴.0¹⁰,¹⁴]tetraconta-4,6,8,17,27,31,37-heptaen-36-yl]-6-methylnon-7-enoic acid

(7e)-8-[(4z,6z,17e,27e,31e)-22,26-dihydroxy-21,40-dimethyl-3-oxo-2,11,15,35,39-pentaoxapentacyclo[32.2.2.1¹²,¹⁶.1²⁰,²⁴.0¹⁰,¹⁴]tetraconta-4,6,8,17,27,31,37-heptaen-36-yl]-6-methylnon-7-enoic acid

C47H66O10 (790.4656)


   

(2r,4r,5r,6s)-5-{[(2r,5r,6s)-5-{[(2r,4s,5s,6s)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4-hydroxy-6-methyloxan-2-yl (2s)-2-[(2s,3r,4s,5r,6s,8r,9r,10s,11s)-4,10-dihydroxy-8-[(2s,3s)-3-hydroxypentan-2-yl]-3,5,9,11-tetramethyl-1,7-dioxaspiro[5.5]undecan-2-yl]propanoate

(2r,4r,5r,6s)-5-{[(2r,5r,6s)-5-{[(2r,4s,5s,6s)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4-hydroxy-6-methyloxan-2-yl (2s)-2-[(2s,3r,4s,5r,6s,8r,9r,10s,11s)-4,10-dihydroxy-8-[(2s,3s)-3-hydroxypentan-2-yl]-3,5,9,11-tetramethyl-1,7-dioxaspiro[5.5]undecan-2-yl]propanoate

C40H70O15 (790.4714)


   

(1r,2r,3s,3as,3bs,5s,5as,6r,7s,9as,9br,11ar)-1-[(2r,5r)-5-(2-{[(2r,3r,4r,5r)-3-hydroxy-4-methoxy-5-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}ethyl)-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-2,3,3b,5,6,7-hexol

(1r,2r,3s,3as,3bs,5s,5as,6r,7s,9as,9br,11ar)-1-[(2r,5r)-5-(2-{[(2r,3r,4r,5r)-3-hydroxy-4-methoxy-5-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}ethyl)-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-2,3,3b,5,6,7-hexol

C40H70O15 (790.4714)


   

(6r,7e)-8-[(1s,4z,6z,8e,10r,12r,14r,16s,17e,20r,21r,22s,24s,26r,27e,31e,34s,36s,40r)-22,26-dihydroxy-21,40-dimethyl-3-oxo-2,11,15,35,39-pentaoxapentacyclo[32.2.2.1¹²,¹⁶.1²⁰,²⁴.0¹⁰,¹⁴]tetraconta-4,6,8,17,27,31,37-heptaen-36-yl]-6-methylnon-7-enoic acid

(6r,7e)-8-[(1s,4z,6z,8e,10r,12r,14r,16s,17e,20r,21r,22s,24s,26r,27e,31e,34s,36s,40r)-22,26-dihydroxy-21,40-dimethyl-3-oxo-2,11,15,35,39-pentaoxapentacyclo[32.2.2.1¹²,¹⁶.1²⁰,²⁴.0¹⁰,¹⁴]tetraconta-4,6,8,17,27,31,37-heptaen-36-yl]-6-methylnon-7-enoic acid

C47H66O10 (790.4656)


   

8-{22,26-dihydroxy-21,40-dimethyl-3-oxo-2,11,15,35,39-pentaoxapentacyclo[32.2.2.1¹²,¹⁶.1²⁰,²⁴.0¹⁰,¹⁴]tetraconta-4,6,8,17,27,31,37-heptaen-36-yl}-6-methylnon-7-enoic acid

8-{22,26-dihydroxy-21,40-dimethyl-3-oxo-2,11,15,35,39-pentaoxapentacyclo[32.2.2.1¹²,¹⁶.1²⁰,²⁴.0¹⁰,¹⁴]tetraconta-4,6,8,17,27,31,37-heptaen-36-yl}-6-methylnon-7-enoic acid

C47H66O10 (790.4656)


   

7-hydroxy-12-[(5-hydroxy-4-methoxy-4,6-dimethyloxan-2-yl)oxy]-10-[(3-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-2-(3-hydroxybutan-2-yl)-3,5,7,9,11,13-hexamethyl-6,14-dioxo-1-oxacyclotetradecan-4-yl acetate

7-hydroxy-12-[(5-hydroxy-4-methoxy-4,6-dimethyloxan-2-yl)oxy]-10-[(3-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-2-(3-hydroxybutan-2-yl)-3,5,7,9,11,13-hexamethyl-6,14-dioxo-1-oxacyclotetradecan-4-yl acetate

C40H70O15 (790.4714)


   

1-{5-[({4-hydroxy-3-[(4-hydroxy-3,5-dimethoxyoxan-2-yl)oxy]-5-(hydroxymethyl)oxolan-2-yl}oxy)methyl]-6-methylheptan-2-yl}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-2,3,3b,5,6,7-hexol

1-{5-[({4-hydroxy-3-[(4-hydroxy-3,5-dimethoxyoxan-2-yl)oxy]-5-(hydroxymethyl)oxolan-2-yl}oxy)methyl]-6-methylheptan-2-yl}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-2,3,3b,5,6,7-hexol

C40H70O15 (790.4714)


   

(2r,3r,4s,5s,7r,9s,10s,11r,12r,13s)-7-hydroxy-12-{[(2s,4r,5s,6s)-5-hydroxy-4-methoxy-4,6-dimethyloxan-2-yl]oxy}-10-{[(2r,3s,4r,6r)-3-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-2-[(2s,3r)-3-hydroxybutan-2-yl]-3,5,7,9,11,13-hexamethyl-6,14-dioxo-1-oxacyclotetradecan-4-yl acetate

(2r,3r,4s,5s,7r,9s,10s,11r,12r,13s)-7-hydroxy-12-{[(2s,4r,5s,6s)-5-hydroxy-4-methoxy-4,6-dimethyloxan-2-yl]oxy}-10-{[(2r,3s,4r,6r)-3-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-2-[(2s,3r)-3-hydroxybutan-2-yl]-3,5,7,9,11,13-hexamethyl-6,14-dioxo-1-oxacyclotetradecan-4-yl acetate

C40H70O15 (790.4714)


   

(1r,2r,3s,3as,3bs,5s,5as,6r,7s,9as,9br,11ar)-1-[(2r,5r)-5-(2-{[(2r,3r,4s,5r)-3-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-methoxyoxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}ethyl)-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-2,3,3b,5,6,7-hexol

(1r,2r,3s,3as,3bs,5s,5as,6r,7s,9as,9br,11ar)-1-[(2r,5r)-5-(2-{[(2r,3r,4s,5r)-3-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-methoxyoxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}ethyl)-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-2,3,3b,5,6,7-hexol

C40H70O15 (790.4714)


   

5-({5-[(4,5-dihydroxy-4,6-dimethyloxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)-4-hydroxy-6-methyloxan-2-yl 2-[4,10-dihydroxy-8-(3-hydroxypentan-2-yl)-3,5,9,11-tetramethyl-1,7-dioxaspiro[5.5]undecan-2-yl]propanoate

5-({5-[(4,5-dihydroxy-4,6-dimethyloxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)-4-hydroxy-6-methyloxan-2-yl 2-[4,10-dihydroxy-8-(3-hydroxypentan-2-yl)-3,5,9,11-tetramethyl-1,7-dioxaspiro[5.5]undecan-2-yl]propanoate

C40H70O15 (790.4714)