Exact Mass: 782.5934

Exact Mass Matches: 782.5934

Found 113 metabolites which its exact mass value is equals to given mass value 782.5934, within given mass tolerance error 0.001 dalton. Try search metabolite list with more accurate mass tolerance error 0.0002 dalton.

SM(d19:0/20:3(5Z,8Z,11Z)-O(14R,15S))

(2-{[(2S,3R)-3-hydroxy-2-[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienamido]nonadecyl phosphono]oxy}ethyl)trimethylazanium

C44H83N2O7P (782.5938)


SM(d19:0/20:3(5Z,8Z,11Z)-O(14R,15S)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:0/20:3(5Z,8Z,11Z)-O(14R,15S)) consists of a sphingosine backbone and a 14,15-epoxyeicosatrienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d19:0/20:3(5Z,8Z,14Z)-O(11S,12R))

(2-{[(2S,3R)-3-hydroxy-2-[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienamido]nonadecyl phosphono]oxy}ethyl)trimethylazanium

C44H83N2O7P (782.5938)


SM(d19:0/20:3(5Z,8Z,14Z)-O(11S,12R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:0/20:3(5Z,8Z,14Z)-O(11S,12R)) consists of a sphingosine backbone and a 11,12-epoxyeicosatrienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d19:0/20:3(5Z,11Z,14Z)-O(8,9))

(2-{[(2S,3R)-3-hydroxy-2-[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enamido]nonadecyl phosphono]oxy}ethyl)trimethylazanium

C44H83N2O7P (782.5938)


SM(d19:0/20:3(5Z,11Z,14Z)-O(8,9)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:0/20:3(5Z,11Z,14Z)-O(8,9)) consists of a sphingosine backbone and a 8,9--epoxyeicosatrienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d19:0/20:3(8Z,11Z,14Z)-O(5,6))

(2-{[(2S,3R)-3-hydroxy-2-(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanamido)nonadecyl phosphono]oxy}ethyl)trimethylazanium

C44H83N2O7P (782.5938)


SM(d19:0/20:3(8Z,11Z,14Z)-O(5,6)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:0/20:3(8Z,11Z,14Z)-O(5,6)) consists of a sphingosine backbone and a 5,6-epoxyeicosatrienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d19:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

(2-{[(2S,3R)-3-hydroxy-2-[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenamido]nonadecyl phosphono]oxy}ethyl)trimethylazanium

C44H83N2O7P (782.5938)


SM(d19:0/20:4(5Z,8Z,11Z,14Z)-OH(20)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:0/20:4(5Z,8Z,11Z,14Z)-OH(20)) consists of a sphingosine backbone and a 20-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d19:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

(2-{[(2S,3R)-3-hydroxy-2-[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenamido]nonadecyl phosphono]oxy}ethyl)trimethylazanium

C44H83N2O7P (782.5938)


SM(d19:0/20:4(6E,8Z,11Z,14Z)-OH(5S)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:0/20:4(6E,8Z,11Z,14Z)-OH(5S)) consists of a sphingosine backbone and a 5-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d19:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

(2-{[(2S,3R)-3-hydroxy-2-[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenamido]nonadecyl phosphono]oxy}ethyl)trimethylazanium

C44H83N2O7P (782.5938)


SM(d19:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)) consists of a sphingosine backbone and a 19-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d19:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

(2-{[(2S,3R)-3-hydroxy-2-[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenamido]nonadecyl phosphono]oxy}ethyl)trimethylazanium

C44H83N2O7P (782.5938)


SM(d19:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)) consists of a sphingosine backbone and a 18-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d19:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

(2-{[(2S,3R)-3-hydroxy-2-[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenamido]nonadecyl phosphono]oxy}ethyl)trimethylazanium

C44H83N2O7P (782.5938)


SM(d19:0/20:4(5Z,8Z,11Z,14Z)-OH(17)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:0/20:4(5Z,8Z,11Z,14Z)-OH(17)) consists of a sphingosine backbone and a 17-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d19:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

(2-{[(2S,3R)-3-hydroxy-2-[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenamido]nonadecyl phosphono]oxy}ethyl)trimethylazanium

C44H83N2O7P (782.5938)


SM(d19:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)) consists of a sphingosine backbone and a 16-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d19:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

(2-{[(2S,3R)-3-hydroxy-2-[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenamido]nonadecyl phosphono]oxy}ethyl)trimethylazanium

C44H83N2O7P (782.5938)


SM(d19:0/20:4(5Z,8Z,11Z,13E)-OH(15S)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:0/20:4(5Z,8Z,11Z,13E)-OH(15S)) consists of a sphingosine backbone and a 15-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d19:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

(2-{[(2S,3R)-3-hydroxy-2-[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenamido]nonadecyl phosphono]oxy}ethyl)trimethylazanium

C44H83N2O7P (782.5938)


SM(d19:0/20:4(5Z,8Z,10E,14Z)-OH(12S)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:0/20:4(5Z,8Z,10E,14Z)-OH(12S)) consists of a sphingosine backbone and a 12-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d19:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

(2-{[(2S,3R)-3-hydroxy-2-[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenamido]nonadecyl phosphono]oxy}ethyl)trimethylazanium

C44H83N2O7P (782.5938)


SM(d19:0/20:4(5E,8Z,12Z,14Z)-OH(11R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:0/20:4(5E,8Z,12Z,14Z)-OH(11R)) consists of a sphingosine backbone and a 11-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d19:0/20:4(5Z,7E,11Z,14Z)-OH(9))

(2-{[(2S,3R)-3-hydroxy-2-[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenamido]nonadecyl phosphono]oxy}ethyl)trimethylazanium

C44H83N2O7P (782.5938)


SM(d19:0/20:4(5Z,7E,11Z,14Z)-OH(9)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:0/20:4(5Z,7E,11Z,14Z)-OH(9)) consists of a sphingosine backbone and a 9-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d19:1/20:3(6,8,11)-OH(5))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienamido]nonadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C44H83N2O7P (782.5938)


SM(d19:1/20:3(6,8,11)-OH(5)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:1/20:3(6,8,11)-OH(5)) consists of a sphingosine backbone and a 5-hydroxyeicosatetrienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d19:1/20:3(6,8,11)-OH(5))

SM(d19:1/20:3(6,8,11)-OH(5))

C44H83N2O7P (782.5938)


   

SM(d19:0/20:3(5Z,11Z,14Z)-O(8,9))

SM(d19:0/20:3(5Z,11Z,14Z)-O(8,9))

C44H83N2O7P (782.5938)


   

SM(d19:0/20:3(8Z,11Z,14Z)-O(5,6))

SM(d19:0/20:3(8Z,11Z,14Z)-O(5,6))

C44H83N2O7P (782.5938)


   

SM(d19:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

SM(d19:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

C44H83N2O7P (782.5938)


   

SM(d19:0/20:4(5Z,7E,11Z,14Z)-OH(9))

SM(d19:0/20:4(5Z,7E,11Z,14Z)-OH(9))

C44H83N2O7P (782.5938)


   

SM(d19:0/20:3(5Z,8Z,11Z)-O(14R,15S))

SM(d19:0/20:3(5Z,8Z,11Z)-O(14R,15S))

C44H83N2O7P (782.5938)


   

SM(d19:0/20:3(5Z,8Z,14Z)-O(11S,12R))

SM(d19:0/20:3(5Z,8Z,14Z)-O(11S,12R))

C44H83N2O7P (782.5938)


   

SM(d19:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

SM(d19:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

C44H83N2O7P (782.5938)


   

SM(d19:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

SM(d19:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C44H83N2O7P (782.5938)


   

SM(d19:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

SM(d19:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C44H83N2O7P (782.5938)


   

SM(d19:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

SM(d19:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

C44H83N2O7P (782.5938)


   

SM(d19:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

SM(d19:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C44H83N2O7P (782.5938)


   

SM(d19:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

SM(d19:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

C44H83N2O7P (782.5938)


   

SM(d19:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

SM(d19:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

C44H83N2O7P (782.5938)


   

SM(d19:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

SM(d19:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

C44H83N2O7P (782.5938)


   

PE-Cer 20:2;2O/22:2;O

PE-Cer 20:2;2O/22:2;O

C44H83N2O7P (782.5938)


   

PE-Cer 19:3;2O/23:1;O

PE-Cer 19:3;2O/23:1;O

C44H83N2O7P (782.5938)


   

PE-Cer 16:2;2O/26:2;O

PE-Cer 16:2;2O/26:2;O

C44H83N2O7P (782.5938)


   

PE-Cer 16:3;2O/26:1;O

PE-Cer 16:3;2O/26:1;O

C44H83N2O7P (782.5938)


   

PE-Cer 18:2;2O/24:2;O

PE-Cer 18:2;2O/24:2;O

C44H83N2O7P (782.5938)


   

PE-Cer 20:3;2O/22:1;O

PE-Cer 20:3;2O/22:1;O

C44H83N2O7P (782.5938)


   

PE-Cer 24:2;2O/18:2;O

PE-Cer 24:2;2O/18:2;O

C44H83N2O7P (782.5938)


   

PE-Cer 24:3;2O/18:1;O

PE-Cer 24:3;2O/18:1;O

C44H83N2O7P (782.5938)


   

PE-Cer 22:2;2O/20:2;O

PE-Cer 22:2;2O/20:2;O

C44H83N2O7P (782.5938)


   

PE-Cer 18:3;2O/24:1;O

PE-Cer 18:3;2O/24:1;O

C44H83N2O7P (782.5938)


   

PE-Cer 26:3;2O/16:1;O

PE-Cer 26:3;2O/16:1;O

C44H83N2O7P (782.5938)


   

PE-Cer 21:3;2O/21:1;O

PE-Cer 21:3;2O/21:1;O

C44H83N2O7P (782.5938)


   

PE-Cer 26:2;2O/16:2;O

PE-Cer 26:2;2O/16:2;O

C44H83N2O7P (782.5938)


   

PE-Cer 17:3;2O/25:1;O

PE-Cer 17:3;2O/25:1;O

C44H83N2O7P (782.5938)


   

PE-Cer 22:3;2O/20:1;O

PE-Cer 22:3;2O/20:1;O

C44H83N2O7P (782.5938)


   

PE-Cer 23:3;2O/19:1;O

PE-Cer 23:3;2O/19:1;O

C44H83N2O7P (782.5938)


   

[(8E,12E)-2-[[(11Z,14Z)-henicosa-11,14-dienoyl]amino]-3,4-dihydroxyoctadeca-8,12-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(8E,12E)-2-[[(11Z,14Z)-henicosa-11,14-dienoyl]amino]-3,4-dihydroxyoctadeca-8,12-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H83N2O7P (782.5938)


   

[(8E,12E,16E)-2-[[(Z)-henicos-11-enoyl]amino]-3,4-dihydroxyoctadeca-8,12,16-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(8E,12E,16E)-2-[[(Z)-henicos-11-enoyl]amino]-3,4-dihydroxyoctadeca-8,12,16-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H83N2O7P (782.5938)


   

[1-carboxy-3-[2-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[3-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-[(11E,14E)-heptadeca-11,14-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-[(11E,14E)-heptadeca-11,14-dienoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[3-[(E)-pentadec-9-enoyl]oxy-2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(E)-pentadec-9-enoyl]oxy-2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[3-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[3-[(7E,9E)-nonadeca-7,9-dienoyl]oxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E)-nonadeca-7,9-dienoyl]oxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[2-[(7E,9E)-nonadeca-7,9-dienoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E)-nonadeca-7,9-dienoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[3-[(E)-dodec-5-enoyl]oxy-2-[(8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(E)-dodec-5-enoyl]oxy-2-[(8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[2-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[2-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-3-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-3-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-hexadecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-hexadecanoyloxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[2-dodecanoyloxy-3-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-dodecanoyloxy-3-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[3-[(14E,16E)-docosa-14,16-dienoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(14E,16E)-docosa-14,16-dienoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[3-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-2-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-2-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[2-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[3-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy-3-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy-3-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[2-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[2-[(E)-dodec-5-enoyl]oxy-3-[(8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(E)-dodec-5-enoyl]oxy-3-[(8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[3-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[3-dodecanoyloxy-2-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-dodecanoyloxy-2-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-[(11E,14E)-heptadeca-11,14-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-[(11E,14E)-heptadeca-11,14-dienoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[2-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[2-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[2-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[3-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(E)-hexadec-7-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(E)-hexadec-7-enoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy-2-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy-2-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-hexadecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-hexadecanoyloxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[3-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[3-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[2-[(E)-pentadec-9-enoyl]oxy-3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(E)-pentadec-9-enoyl]oxy-3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[2-[(14E,16E)-docosa-14,16-dienoyl]oxy-3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(14E,16E)-docosa-14,16-dienoyl]oxy-3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[3-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

[1-carboxy-3-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C48H80NO7+ (782.5934)


   

2-[carboxy-[2-hydroxy-3-[(14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-14,17,20,23,26,29,32,35-octaenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-hydroxy-3-[(14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-14,17,20,23,26,29,32,35-octaenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C48H80NO7+ (782.5934)


   

SM(39:4)

SM(t18:1_21:3)

C44H83N2O7P (782.5938)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

CerPE 16:2;O2/26:2;O

CerPE 16:2;O2/26:2;O

C44H83N2O7P (782.5938)


   
   

phSM(39:4)

phSM(d19:1_20:3)

C44H83N2O7P (782.5938)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved