Exact Mass: 776.5016
Exact Mass Matches: 776.5016
Found 68 metabolites which its exact mass value is equals to given mass value 776.5016
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Rutamycin
An oligomycin with formula C44H72O11 that is oligomycin A in which the methyl substituent adjacent to the spirocyclic centre has been replaced by a hydrogen. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D009840 - Oligomycins C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents C254 - Anti-Infective Agent > C258 - Antibiotic Same as: D05778
(1R,4E,5'R,6R,6'R,7S,8S,10S,11S,12R,14S,15R,16S,18E,20E,22S,25R,27S,29S)-22-Ethyl-7,11,14,15-tetrahydroxy-6'-(2-hydroxypropyl)-5',6,8,10,12,14,16,29-octamethylspiro[2,26-dioxabicyclo[23.3.1]nonacosa-4,18,20-triene-27,2'-oxane]-3,9,13-trione
SM(d16:2(4E,8Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))
SM(d16:2(4E,8Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:2(4E,8Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) consists of a sphingosine backbone and a Resolvin D5 chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.
SM(d16:2(4E,8Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))
SM(d16:2(4E,8Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:2(4E,8Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) consists of a sphingosine backbone and a Protectin DX chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.
1-(6-[3]-ladderane-hexanoyl)-2-(8-[3]-ladderane-octanyl)-sn-glycero-3-phospho-(1-sn-glycerol)
Technetium (99mTc) sestamibi
V - Various > V09 - Diagnostic radiopharmaceuticals > V09G - Cardiovascular system > V09GA - Technetium (99mtc) compounds D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D019275 - Radiopharmaceuticals C1446 - Radiopharmaceutical Compound > C2124 - Radioconjugate
Oligomycin D
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D009840 - Oligomycins C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents C254 - Anti-Infective Agent > C258 - Antibiotic
SM(d16:2(4E,8Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))
SM(d16:2(4E,8Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))
(1R,4E,5R,6R,6R,7S,8S,10S,11S,12R,14S,15R,16S,18E,20E,22S,25R,27S,29S)-22-Ethyl-7,11,14,15-tetrahydroxy-6-(2-hydroxypropyl)-5,6,8,10,12,14,16,29-octamethylspiro[2,26-dioxabicyclo[23.3.1]nonacosa-4,18,20-triene-27,2-oxane]-3,9,13-trione
2-[[(2R)-2-[(Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(E,3R)-3-hydroxyoct-1-enyl]cyclopentyl]pent-3-enoyl]oxy-3-tetradecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-3-[(Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(E,3R)-3-hydroxyoct-1-enyl]cyclopentyl]pent-3-enoyl]oxy-2-tetradecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
1-hexadecanoyl-2-(9,10-epoxyoctadecanoyl)-sn-glycero-3-phospho-L-serine
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate
2,3-bis[[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy]propyl (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate
6-[2-heptadecanoyloxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
6-[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
3,4,5-trihydroxy-6-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-pentadecanoyloxypropoxy]oxane-2-carboxylic acid
6-[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
6-[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
6-[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
3,4,5-trihydroxy-6-[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]oxane-2-carboxylic acid
6-[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(Z)-nonadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
6-[2-[(Z)-heptadec-9-enoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
2,3-bis[[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy]propyl (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate
SQDG(32:2)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved