Exact Mass: 773.5653
Exact Mass Matches: 773.5653
Found 110 metabolites which its exact mass value is equals to given mass value 773.5653
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
PC(16:0/18:1(12Z)-O(9S,10R))
PC(16:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(16:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(18:1(12Z)-O(9S,10R)/16:0)
PC(18:1(12Z)-O(9S,10R)/16:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:1(12Z)-O(9S,10R)/16:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(16:0/18:1(9Z)-O(12,13))
PC(16:0/18:1(9Z)-O(12,13)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(16:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(18:1(9Z)-O(12,13)/16:0)
PC(18:1(9Z)-O(12,13)/16:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:1(9Z)-O(12,13)/16:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
1-(6-[3]-ladderane-hexanyl)-2-(8-[3]-ladderane-octanyl)-sn-glycerophosphocholine
1-(1Z-octadecenyl)-2-oleoyl-sn-glycero-3-phosphoserine
[(2R)-2-hexadecanoyloxy-3-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
2-amino-3-[[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-icosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[3-[(11Z,14Z)-henicosa-11,14-dienoxy]-2-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[3-hexadecoxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[2-[(Z)-henicos-11-enoyl]oxy-3-[(Z)-pentadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[3-heptadecoxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[3-decoxy-2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[3-[(Z)-heptadec-9-enoxy]-2-[(Z)-nonadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-icosoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[2-decanoyloxy-3-[(15Z,18Z)-hexacosa-15,18-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[3-[(Z)-henicos-11-enoxy]-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[2-[(Z)-hexadec-9-enoyl]oxy-3-[(Z)-icos-11-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[3-[(Z)-docos-13-enoxy]-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[hydroxy-[3-[(Z)-octadec-9-enoxy]-2-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid
2-amino-3-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-tetradecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[2-[(Z)-docos-13-enoyl]oxy-3-[(Z)-tetradec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-nonadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[2-dodecanoyloxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[3-[(Z)-hexadec-9-enoxy]-2-[(Z)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[3-dodecoxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-nonadecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[2-[(Z)-heptadec-9-enoyl]oxy-3-[(Z)-nonadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-tetradecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[hydroxy-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-octadecoxypropoxy]phosphoryl]oxypropanoic acid
2-amino-3-[hydroxy-[3-[(9Z,12Z)-octadeca-9,12-dienoxy]-2-octadecanoyloxypropoxy]phosphoryl]oxypropanoic acid
2-amino-3-[[2-heptadecanoyloxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-pentadecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[2-hexadecanoyloxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid
2-[4-[3-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]ethanesulfonic acid
2-[hydroxy-[(E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoyl]amino]dec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]amino]dodec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxytetradeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]amino]dodeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]hexadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-[[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]amino]-3-hydroxyoctoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(E)-2-[[(11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-11,14,17,20,23,26,29-heptaenoyl]amino]-3-hydroxyoct-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxyoctadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]amino]decoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]icosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxyoctadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]hexadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]docosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxytetradeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxytetradec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
1-(6-[3]-ladderanehexanyl)-2-(8-[3]-ladderaneoctanyl)-sn-glycero-3-phosphocholine
A 1,2-dialkyl-sn-glycero-3-phosphocholine in which the 1- and 2- alkyl groups are specified as [3]-ladderanehexanyl and [3]-ladderaneoctanyl respectively.